\Sus+'ern
J

Manaqar‘s

N
Gu:. de

For

PDP-8E

Dec SﬂS‘l’em

TSS 8.24 Monitor

-8

10

11

12

12

CHAPTER 1

INTRODUCTION TO TIMESHARING AND EDUSYSTEM 50

1.1 INTRODUCTION TO TIMESHARING CONCEPTS

In a typical programming environment, a user may desire to have
a computer edit, test, debug and execute a program. However, therec
are frequently long periods of time when the computer waits for input
from the programmer. At these times, it is desirable to find some-
thing else for the computer to do. One solution is called "time-
shéring"- Typically, a number of users each has a terminal connected
to a camputer,vand as each user requires computer time, the processor
assigns computer time to each user. Thus, by proper allocation of

'processor time, each user, in effect, has all the computer time

necessary for a particular program. Users do not have to feel rushed
or be concerned about others who may desire to use the computer.

vJ EdﬁSystem 50 is such:a timesharing systemn. From the user's
vieﬁpoint, each user on an EduSystem system has a terminal and 4K
of core for his exclusive use. In addition, disk storage may be
sed on a first-come/first-serve ba51s. Any of the several peri-
pherals connected to EduSystem 50 may be reserved by a user
exc1u51ve1y until completion of the program. The EduSystem 50
Monitor is the set of programs which allows all of this to happen.

| : oo
The EduSystem 50 Monitor reserves fields 0 and 1 for its

exclusive use; the rest of core is given to users as they need it.
Sinée there may not be enough core for every user to simultaneously
ac5upy 4K, each user has a 4K section of disk reserved for his

‘program. ‘When there is not enough room in core, the entire 4K is

written to disk. Later, when enough core is available, the 4K is

‘read from the disk back into core again. This process is called

swapping, and the area on disk reserved for it is called the swap

area. I | |
s [) LS

1-1

To prevent a'?aﬁg from interfering with tle Operation of

others, several steps are taken:

a) An OSR is not allowed; this prevents disputes over
the switch register setting.

b) The user cannot perform an HLT.

c) The program must be executed with the data field set
equal to the instruction field; no change is allowed

%gTeither. In fact, the user may not do any kind of

In rea}ity, any of the above instruetionsvmay be contained
in a user's program. They are trapped By thevhardwere, which
does not allow them to function. Instead, the tiﬁe—share herd—
ware option raises a flag and causes an interrupt. The Monitor
must then determine the cause of the interrupt. If, for example,
the user does a KRB, the AC will not be altered. Insteaa,fﬁhe
KRB causes an interrupt into Monitor code, which looks back to
see what causes the interrupt. When is sees Ehe KRB, it takes
the necessary steps to simulate the KRB. It then returns to the}
user's program. Thus, there are 512 different I0Ts the user-capr
- &xecute; the Monitor could be modified to perform almost eﬁy~
desired function for them. These trapped; IOTs. dnd the . trapped

wtt

tHUTs and OSRs are sometimes referred to an Unlmnlemented USer

Operations (UUOs). R | -
The time-share hardware option makéé this possible. ~$h¢~
; ; o
vrocessor can be in one of two modes: executive mode and user
_ : ' CE
sode. In executive mode, the processor operates like a stan-
-ard PDP-8. However, when the processor is in user mode, the

instructions discussed above cause an interrupt, and return the

prccesscr to executive mode.

1-2

NOTE

Instructions microcoded with HLT or OSR
will complete their functions normally
before the 1nterrupt occurs.

51'.

To begln u51ng the system the user must be identified at
ithe terminal. Each user has an account number, under which disk
files are stored. The Monltor also keeps tracx of system usage
by account number.‘ To protect agalnst misuse of the system, the
tUSer must glve an account number and a password to the system:
th;s_process‘ls called.a LOGlN.

| 1_6nce logéed in, the user may type various commands to the
MOnitor, execute a program (either original or from the library),
or tybe characters to be input to the program. When finished,

the user logs out enabling others to use the tesrminal.

1.2 FEDUSYSTEM 50 HARDWARE CONFIGURATIONS

 § minimum ccnfiguration for EduSystem 50 includes:

‘a) PDP-8, 8I, or 8E, with at least 12K memory (16K memory
is better) and the time-share option. (A1l are referred
to in the following text as PDP-8.)

b) RFO08 with at least one RS08 (a DF32 with at least two
v - platters is acceptable, however, this is not recommended

because of the limited storage area and slow speed of
the device).

e) Multi-terminal capablllty - one or more KL8Es or PTO8s
'+~ or a DCO8A.

All configurations, except PDP-8Is with a DCO8A, require
a real-time clock.

| Optional hardware supported:

.a) Up to 32K memory.

:1;b)' DCOSA - may be used only on a PDP-8I and may be used in
addition to PTOS8s.

c) 689AG modem controller - for use with DCO8A only.

d) E@E- all instructions of any standard EAE are supported
with the exception of the traditional PDP-8 step counter;
which is not saved or restored.

e) High—Speed Reader - a paper tape reader is required to
build EduSystem. A low-speed reader may be used, however,
the build procedure will be very time consuming. -

£) High-Speed Punch.

q) Line Printer - LP08/LE8 or LSO08/LSS8E.

h) DECtape - TCOl or TCO8 and up to eight drives (TL8E.
DECtape is not allowed.) .

i) Up to four disks (three additional RS08s).
3) Card Reader.

k) RK8E (up to four drives).

SOFTWARE
The following sections présent an introduction to the comg-
t nrograms of EduSystem 50.

1 INIT z : B

INIT is the initializer program. It is the job of - INIr tc:

a) Build a new system on the system disk from paper tapes. !

b) Initialize a file structure on the dlSk for program ”
storage. ‘

c) Allow the user to make patches to the system. This can

be useful if a particular system feature must be: altered.
d) Allow the user to transfer the entlre_contents Qf the
disk to DECtape. This is called a "dump". = , 2

e) Allow the user to load the entire disk from DECtape. .
This allows all saved programs, account numbers, etc., i
to be restored to their condition when a dump was last °
taken. S

£) Allow the user to start the system so that it 15 in its
operating state. A start must set up fields O and 1 to
the proper initial condltlons, start the real time c]ock
and transfer control to the monitor.

1-4

S 1.3.2

ST

a——

SI is the System Interpreter. Whenever a user types a command

at the console, SI analyzes the command. SI is stored on the disk

and is read into field 2 when it is needed.

 1.3.3 FIP

FIP is the File Phantom. Whenever certain IOTs (see Appendix C)

~ are executed, FIP is called in to handle them. FIP handles disk

- 'file storage and assigns devices to users when they regquest them.

FPIP is also stored on the disk and, when it is needed, it is read

into field 2.

1.3.4 TS8 and TSSII

TS8 and TS8II are the two sections of the resident Monitor

which are resident (always present) in fields 0 and 1, respect-

_ively. The resident code is responsible for: y

a)

B)

c)

d)

Scheduling - The scheduler deecides who uses the computer

and when. If the user types a command, the scheduler
brings in SI. If more than one user wants a program to
run, the scheduler distributes time to the users. If
there is insufficient core for everyone to use at once,
the scheduler swaps users to and from the disk.

UUO Handling - When the processor is in user mode, remembe"
that if a user executes any type of IOT, an HLT, or an OSR.
The hardware does not execute the instruction, but causes
an interrupt. The IOT, HLT, or OSR is called a UUO in thi:
case. The Monitor has the job of simulating the function
of the UUO, and »ossibly returning control to the user.

By definition, resident UUOs are those which are handled b-
the code residing in fields 0 and 1. Non-resident UUOs
must be handled by calling in FIP.

Interrupt Handling - All I/O Interrupts must be isolated
and handled by the Monitor.

Keeping Time - Clock interrupts are counted and at certair
inte:rvals certain tasks must be performed.

5 Svystem Programs

Th 'vre are several programs run by a user to perform certain

‘enlient operations. For example:

a) PUTR - Used to transfer information from any device to
another device. This is the new program which replaces
the programs PIP and COPY which were operated under the
previous version of the Monitor.

b) BASIC - A major interactive compiler language.

The list of programs is extensive and is covered in more detail

i

?r.

NUMBERS AND TERMINOLOGY

EduSystem 50 associates a number with each terminal. The

iinal with device codes 03/04 is called, variously K00, lire O, E
ninal 0, or console 0. 1In order to accomplish anything, a user “
» terminal must "log in". To do this requires a 1 to 4 digit

ple) . number", and a 0 to 4 character "password". Wher the use;n
smpts to log in, the account number and password are given. If !
; are valid and if the system permits logging in, the system ;
lgns a "job number". When the user is th:oqgh.:a LOGOUT or

3 command is required. At this time his aécount i;_chafged

the amount of time used. In this way system usage can be

itored.

Sometimes account numbers are split into two, 2-digit numbers
separated by a comma. The first two digits areacalled the
ieact number, and the last two digits are called the programmer

ser. Aceccount 1, 2 is the same as account 0102.

There are three permanently defined account:numbers, " Account 1{

>ngs to the system manager. Anyone logged in under account 1 has

certain priveleges no other person has, such as defining other
account numbers and their passwords. However, doing certain things
under account 1 could be detrimental to the system. Account 2
ﬁelongs to the system librarian.l The common brograms are stored
uﬁder account 2, and‘any uéer can access them there. Account 3
belongs to the system operator who has certain privileges which

aré not as detrimental as those granted to account 1.

1.5 SYSTEM CONVENTIONS

J The disk is divided‘into tracks. One track is defined as 4X
(4096 words) of disk sﬁorage. (Two revolutions of an RFO08, four
révoiutions of a DF32D, eight revolutions of a DF32.) Thus, track 0
refers to the first 4096 words of storage on the RF08 or DF32. One
'ségment is defined as two pages, 400 (octal) or 256 (decimal) words

of disk storage. All disk files are measured in segments.

Unless otherwise noted, all commands and responses typed by

the user should be terminated with a carriage return.

CHAPTER 2

BUILDING EDUSYSTEM 50 FROM PAPER TAPE

2.1 BUILDING EDUSYSTEM 50

Building an EduSystem 50 software system is accomplshed in four
phases. «

I)' Loading and initializing the Moniﬁor.

II) Building the system program library.
III) Defining account numbers, passwords and quotas.
IV) Dumping the newly built system to DECtape.

Phase I requires the four custom-made Monitor paper tapes

(s1, FIP, INIT, and TS8) plus the binary paper tape for PUTR.
These paper tapes will be loaded onto the system disk after which
a number of questions will be asked.

Phase II is accomplished with the Edusystem 50 software running.
The system library is built in one of three ways, depending upon
which medium system library programs are distributed on. If the
library is distributed on DECtape, this step requires the library
pECtape. If the library is distributed on an RK05 cartridge, this
step requires the library cartridge. If the library is distributed
on paper tapes, “this step requires the librery paper tapes.

phase III is also done while the EduSystem-50 Monitor is 1in
operation and uses the program LOGID to define user accounts.

phase IV applies only to systems which include DECtape. It 1S
accomplished by running EduSystem 50 "INIT".

2.2 BUILD PROCEDURE

I. LOADING AND INITIALIZATION
1. Turn computer power key to POWER (ON)
2. Turn the conole terminal ON (LINE or REMOTE).
3. Turn high speed reader ON

4, Lower, then raise the HALT sgwitch.
NOTE: On PDP-8/I, to 'LOWER' a switch means press
the top of the switch in, 'RAISE' means push tae
bottom of the switch in.

E, Raise the SING STEP switch. Lower the DATA FIELD
and INSTRUCTION FIELD switcnes if included on v
computer (PDP-8 and PDP-8/I;.

6. Press the CLEAR switch, {(not present on PDP-8 or

PDP-8/1I).
2 =1

For each step in the table, place each of the console
switches numbered 0 to 11 either in the up position if
the corresponding table entry is 1, or in the down
position if the corresponding table ertry is 0. When
all 12 switches have been set to correspond to a line
in the table, follow the instructions in the right

hand column and proceed to the next line. The tables
also include octal values of the binary switch settings
for the benefit of users familiar with octal numbers.

.

Table 2-1
RIM Loader Program (High-speed version) o S
L acep Octa) Switch WERTENRENRY . T Ty
[} Values Setting And Then
012 | 335 | 678 | 91011
1 0000 000 | 000 | 000 | 000 press EXTD ADLR LOAD
2 7756 111 111 101 110 press ADDR LOAD
3 6032 110 | ooo | 011 | olo, Lift DEP key
4 6031 110 | oo0 | o011 { ool lift DEP key
5 $357 | 101 | o1 | 1ot | 111 lift DEP key -
6 6016 110 | o600 | 011 |} 110 1ift DEP key
7 7106 i1l 001 000 | 110 lift DEP fey
8 7006 111 | 000 | 000 | 110 lift DLP key
9 7510 111 | 101 | ool | 000 lift DEP ey
10 5357 101 | ol1 | 1ol | 111 lift DEP key
11 7006 111 | ooo | 000 | 110 lift oEp key
12 6031 110 | coo | o1t | ool l1ift DEP key
13 5367 100 | o1l | 110 | 111 1ift DEP key
14 6034 110 | 000 | o011 | 100 1ift DEP key
15 7420 111 | 100 | o010 | o000 1ift DEP key
16 3776 011 | 111 | 111] 110 | lift DEP key
17 3376 oLl | oll f 111 | 1lo " 1ift DEP key .
18 5356 101 | o1l | 101 | 110 1ilt OCP key .
! T#BLE W-2. RIM LOADER FOR HIGH-SPELD READER
Step Cotal Switch CEEEERNE
[] Values Sctting hAnd Then
| 012 | 3i5 | 678 | 91011
1 0000 000 | 000 | 000 { 000 press EXTD ADDR LOAD
2 7756 111 111 101 110 press ADDR LOAD
3 6014 1i6 | 000 | Ol 100 1ife 'DEP key © -
: a 6011 110 | coce | ool { ool 1ift DEP key
| 5 5157 101 § o1 | tor | 111 1ift DEP key
. 6 6016 110 | 000 | oor | 110 1ifv DEP key
7 7106 111 001 000 110 " lifv DEP key
8 7006 111 | 000 | c00 | 110 1ift PEP koy
3 7510 111 | 101 (001 | 000 | Jift DEP key
10 5374 101 { 011 | 111 | 100 | -lift OEP key
11 -| 7006 111 | ooo | 000 | 110 1ift OEP key
12 6011 110 | goo | 001 | ool lift DEP key
13 5367 101 { o1r | 110 | 111 .| lift DEP key
14 6016 r1o | ooo | oor | 110 1ift DEP key
15 7420 111 | 100 | 010 { 60O lift DFEP key
16 3776 c1l 11l 111 110 lift DEP key - 7 ¢
17 31174 o1l | o011 § 111 | 110 1ift DEP key i
s | s e fou o [e oexey ¢

i
1

_.,/V"‘"" - -) T———
Skp:a 7- AnIS S ?w‘b\)
_

After RIM has been loaded, it is good programming
practice to verify that all instructions were stored
properly. This can be done by performing the steps
illustrated in Figure 2-3

[‘
PRESS CLEAR PRESS CLEAR
i
SET ROTARY | SET ROTARY
' SELECTOR : INDICATOR
SWITCH TO MD | SWITCH TO MD
|
SET ALL ' ’ SET ALL
SWITCHES SWITCHES
DOWN : ; : DOWN
| PRESS EXTD
— ADDR LOAD
PRESS EXTD I
ADDR LOAD . 4
SET SWITCHESH
7756
SET SWITCHES
T0 7756
PRZSS ADDR
| Loap
! pRESS ADDR
LOAD o -
PRESS EXAM i
SET SWITCHES= ,43~
FIRST INSTRUCTION RN
] ORRECT
N INSTRUCTIO S
. LIFT DEP ? |
;o SET SR=MA-1
™ CET SWITCHES=
NEXT INSTRUCTICN
-] PRESS ADDR
— LOAD
LIFT DEP ‘ YES
' N
SET SR=CORRECT RIM IS LOADED
INSTRUCTION —_—
PRESS DEP

(RIM IS LOAD@
Figure 2-3 Checking the RIM Loacer

(2

After the RIM loader has been deposited and checked, raise

switches O0,1,2,3,4,5,6,8,9, and 10; lower switcltes 7 and 11;

then press ADDR LOAD. 2T 4 g T

(3 7 2 s 1z

13. Fress the CLEAR switch; then press the CONT switch. If your
PDP-8 has no CLEAR switch press the START switch.

12.

(figure E-5 on next page)

HIGH SPEED
—
" READER

Al

TURY H.S.
READER ON

Y
PLACE IVIT
IN H,.S.R.

Y

PPESS CLEAR

TUMN
CCLILE

(%)

L

3

LOAL RIM

o

SET ROTARY
SLLECIOR
SWITCH O MD
X
SET ALL
SWITCHES
pOWN .

PRESS
LY. TD abidi. LOAD

r
Y

SET SWITCHES

TO 7756

!

1 PrESS
ADDR L/O4D

|

WHICH

READLR?
P

TURN TTY TO
LIND

v

PLACE INIT
IN L.S.R.

v

AND CONT

’

TAPEZ NO

READS IN

apuneas N
terninal

mre
IS LOADED

S
e

PUT L.S.R TO
START

14,

15,

16.

17.

18.

19.

20,

21.

If the paper tape fails to reac in at this point
go back to step 1.

When the paper tape stops the message:

LOAD» DUMP» STARTs ETC?

will be printed on the console. If this does not
cccur, go back to step 1.

TYpe BUILD followed by a RETURN. The system prints:
‘ BUILD?

Fespond YES, followed by a RETURN, (labeled CR on
some terminals).

The system prints:
' SI

Flace the paper tape 'SI' in the reader and tvpe a
EETURN. The tape will read in. If an error occurs
while reading a tape, the wrong tape was loaded

the system will print:

TAPE READ ERROR OR PLEASE TRY AGAIN
PLEASE TRY AGAIN s1 1
SI ¢

Tt

In either case, reload the requested tape ('SI' in
this example)and type a RETURN

Lfter successfully reading 'SI' the system will
request the paper tape 'FIP' be placed in the
reader and the RETURN key typed, exactly as when
loading the 'SI' tape.

'ext the tape 'INIT' will be requested. This is the
same tape which was previously loaded.

Mext the tape 'TS8' will be requested.
I.astly the tape 'PUTR' will‘be requested.

If ail Monitor subprograms have been loaded without
difficulty, the printout on the console will arppear
a2s shown below.

LOAD» DUMP., START», ETC? BUILD
BUILD? YES

s1
FIPp ¢
INIT ¢
TS8 ¢
PUTR ¢

-6

22,

23.

24.

25.

Next the system will print:

MEW LOGIN MESSAGE?

i 4
The reply should be ggs or NO, aependLng on wheth
yo “want to have a message prlnted on ¢ach console

\hever it is logged in."™The message may be a
greetlng, caution, special instruction, or anythin
else you desire as long as the message has no more
than 127 characters. Each RETURN counts as two
characters.

"% If the reply is NO the system will print its next

ry, (go to step 23). However, if the reply is’
YE n the system will print: .

END WITH ALTMODE

and position the console paper so that your messa@
can be typed on the next line. After typing the.
message, you should end by typing the ALT MODE key
(ALT MODE 1is labeled ESC on some terminals.) The;
printout and an example message would appear as
shown below.

NEW LOGIN MESSAGE? YES
END WITH ALTMODE ‘
CONGRATULATIONS.+ YOU ARE NOW ON-LINE WITH EDUSYS!
REPORT ANY PROBLEMS BY RUNNING. “GRIPE".$

When typing the ALT MODE key at the end of the meg
a dollar sign ($) will be printed as shown above.

The system asks:
LOAD EXEC DDT AT START-UP?

Respond NO, followed by RETURN.

The next query asks you to . specify the number of"
core fields available for user programs. Type a .
number which is two less than the number of 4K fig
on the system, then type a RETURN. If the system
4 fields (16K of core) for- example, the response1§

be 2 as below.h

¢ USER FIELDS - 2

The system asks whether the CTRL/S feature is desi
This feature, which allows terminal cutput to bew
stopped by typing CTRL/S and restarted by typing

CIRL,Q, 13 particuliariy useful on viiec tarminals
such as the VT05 and VT50. Respond YES or NO, fo§
by a RETURN. . '

ENABLE tS FEATURE? YES

27.

29.

30.

31.

Next, the power frequency may be requested. If the
power is €60 Hertz (normal in North America) respond
YES; if not, respond NO, then type a RETURN.

60 HERTZ POWER? YES

The system asks whether the system disk should be
zeroed. Respond YES, followed by a RETURN.

WRTTE ZERO SYSTEM DIRECTORY? YES

Three passwords are requested, for accounts 1,
2, and 3. Enter these passwords, which may each
be up to four characters long, followed by a RETURN.

i SYSTEM PASSWORD? SYST
3 LIBRARY PASSWORD? LIBR
3 QPERATOR PASSWORD? OPER

The question "LOAD, DUMP, START, ETC??" is again
printed. This time respond START followed by a
RETURN.

LOAD, DUMP, START, ETC? START

When reguested enter the current month, day, and
year separated by hyphens followed by RETURN.

MONTH-DAY -YEAR: 1 -23-75
Next type the time of day expressed in military time
using a 24-hour clock. Separate the hour and minutes
with a colon. For example, 9:45 a.m. is entered
9:45, 1:30 p.m. is 13:30, 9:45 p.m. is 21:45,

HR$MIN - 13118

No additional questions will be asked after the time

has been entered. This completes Phase I of the
building process.

Your printout to this point might appear as follows:

LOAD> DUMP, START», ETC? BUILD’
BUILD? YES

SI ¢

FIlp 1

INIT v

TS8 ¢

PUTR ¢

NEW LOGIN MESSAGE? YES
END WITH ALTMODE

CONGRATULATIONS. YOU ARE NOW ON-LINE WITH EDUSYSTEM=S0.

REPORT ANY PROBLEMS BY RUNNING “GRIPE".$

LOAD EXEC DDT AT START-UP? NO

¢# USER FIELDS - 2

ENABLE 'S FEATURE? YES

60 HERTZ POWER? YES : .

WRITE ZERC SYSTEM DIRECTORY? YES
SYSTEM PASSWORD? SYST

LIBRARY PASSWORD? LIBR

OPERATOR PASSWORD? OPER

LOAD» DUMP,» START» ETC? START

MONTH -DAY ~-YEAR: 1-23-7S
HRtMIN - 13118

After entering the time of day and termlndtlng the
line with the RETURN key, control is transfered

to the Edusystem-50 monitor. The system is now
on-line and ready to operate. However, there are no
programs in the system library. B .

BUILDING THE SYSTEM LIBRARY

Building up the system library is done while the
system is on-line, i.e., operational and running.

1. LOGIN with the system library account number
and password. Type

LOGIN 2 LIBR
replacing LIBR with the password for the libraiy
account. Terminate this LOGIN command w1th the
RETURN key.

The command LOGIN and account number and password
will not echo (print) on the console paper.

When the LCGIN is accomplished, Monitor prints

the version number of the Edusystem-50 Monitor
being used, the job number assigned by the Monitor,
the account number of the job, the number of the
console being used, and the current time of day.

The login message is printed next, followed by
Monitor's dot indicating that the building session
has been successful to this point. For Example:

TSS/8.24 JOB @1 (00,021 KOO 13:18119

CONGRATULATIONS. YOU ARE NOW ON-LINE WITH EDUSYSTEM-58.
REPCRT ANY PROBLEMS BY RUNNING "*GRIPE".

Type "START 0" followed by a RETURN.

This starts the program PUTR which was loaded
during the build process. PUTR prints as
asterisk, indicating that it is ready to accept
a ccmmand.

+START ©
* .

At this time, one of three procedures must be
followed depending upon whether the library programs
.are supplied on paper tapes, Dectzpes, or RKOS

disk. If the library is on paper tapes, follow thoe
steps in section A) below. If the library is on
DECtape, follow the steps in section B), and if the
library 1is on RKO5 disk, follow the steps in sec*icn
c). '

A) The following steps are used to build the sys-
tem library from paper tapes. First the system
programs will be loaded, (those labelled
"name.SAV", eg BASIC.SAV)

1) Load the paper tape labeled LOGOUT.SAV in
the high speed reader. 1In response to the
* which PUTR has printed, type:

COPY LOGOUT.SAV=PTR:/SAV

and terminate the line with a RETURN.
PUTR will print "#"., Respond byv typing a
RETURN. PUTR will print "“NONAME.", read
the tape, and then print another *.

2)

3)

4)

35)

Step 1 should now be repeated for any
other ".SAV" tapes to be loaded, sub-
stituting the name of the tape for

"LOGOUT" in the COPY command. Fcr

example, if the tapes LOGID.SAV, BASIC.SAV,
SYSTAT.SAV and PUTR2.SAV are loaded, the
printout would appear as follows:

*COPY LOGID+SAU=FTR3:/SAV
'

NONAME .

*COPY BASIC «SAU=PTR$/SAV
U

NONAME »

*COPY SYSTAT.SAV=PTR?/SAV
t

NONAME .

*COPY PUTRE «SAU=PTRt/SAV
t

NONAME .

As a minimum include at least LOGID.SAV,
LOGOUT.SAV and PUTRZ.SAV,.

When all the desired ".SAV" tapes have
been loaded type EXIT in response to the
asterisk, followed by a RETURN.

Next type "R PUTR2" in response to the
period the Monitor has printed at the left
margin. PUTR2 will print an asterisk. The
printout should appear as follows: : ,
*EXIT ‘ ‘ i ' ; (’
tBS S 5
«R PUTRZ - E -
* :

If BASIC is loaded and it is desired to

load some of the BASIC demonstration programs,
("name .BAS") load the desired tape into the
reader and type, for example-.

COoPY FTBALL-BQS/BASBPTR&

replacing FTBALL with the name on the tape.
PUTR will respond as it did in Step 1.

6)

7)

8)

If it is desired to load any ASCII paper
tapes, ("name.ASC") load the desired tape
into the reader and type, for example:

COPY WDGAME .ASC/TS8=PTR}

replacing WDGAME with the name on the
tape. PUTR will respcnd as it did in
Step 1.

Focal tapes ("name.FCL") must be loaded
from the terminal using FOCAL.

When all tapes have been loaded type EXIT
in response to the asterisk printed by

' PUTR followed by a RETURN.

Next type LOGOUT in response to the period
the Monitor has printed at the left margin.

This completes phase two of the building
process. Now go to Phase III.

371

B) The following steps are used to build the
system library from the library DECtape.

1)

2)

3)

4)

5)

Mount the library DECtape on urnit 1,

(see chapter 4 Introduction to Programming
for complete instruction) and writelock
the unit. 1In response to the * printed by
PUTR, type the following command line:

COPY *=Dl3

This command requests that all files on _
DECtape unit 1 be transferred to the system -
disk. :

As each file is transferred, PUTR will type -
its name. When finished, PUTR will type
another *.

In response to the *, type EXIT.

Next type "R PUTR2" in response to the
perlod the Monitor has printed at tae left
margin. PUTR2 will print an asterisk.

The printout for this step should appear
as follows:

*EXIT
tBS

R PUTR2
*

In response to the asterisk, type EXIT,
followed by a RETURN.

Next type LOGOUT in response to the
period that the Monitor has printed at
the left margin.

This completes phase two of ‘the bulldlng
process. Now go to Phase ITI.: -

2-13

C) The following steps are used to build the
system library from the library RK@5 cartridge.

1)

2)

3)

5)

Mount the library cartridge in unit @, and
writelock the unit. In response to the *
printed by PUTR, type the following command

~line:

.~ COPY #=RKAB:

This instructs PUTR to copy all programs

~from the first half of the cartridge to the
system library.

~As each file is transferred, PUTR will type

its name. When finished, PUTR will type
another *, (The second half of the cart-

. ridge is a duplicate of the first half. To

use this second half, substitute RKBF for
RKAL.)

In response to the *, type E or EXIT.

Next type "R PUTR2" in response to the
period the Monitor has printed at the left
margin. PUTR2 will print an asterisk.

The printout for this step should appear
as follows:

*EXIT
*BS

R PUTR2
*

In response to the asterisk type EXIT, followed
by a RETURN

Next type LOGOUT in response to the period that
the Monitor has printed at the left margin.

This completes phase two of the building
process. Now go to Phase III.

2 -1y

III.

Defining Account Numbers, Passwords and Quotas.

Users should never operate under accounts 1,2, or 3,?ﬁherefore?

it is necessary to define additional accounts. Accdunks can
only be created by the systen manager; somecne logged in under .
account number one. Each account is actually :wo numbers, a
project number and a programmer number. Account nuwrber 5440
is actually project number 54, programmer number 40. Account ;
number 102 is project number 1, programmer number 2. Users’
may specify that all other users may share their files, only
users whose project number is the same, or no other users at
all. See the Protect command in Appendlx B for details. In . @ .
defining new account numbers it is useful to group users into
projects, giving them account numbers which have a common =~ |
project number. : - RN

2

R SN

As each account is defined the system manager 1ilso determines
the maximum number of disk segments that the a:xcount may own.*ﬂ'
This is the guota for the account and is definad in pultiples -
of twenty five (25) segments; a minimum of & segments to a.. .
maximum of 1575.For normal use 50 - 100 segmen s will cufflCe.,
'
The system manager also defines another parameter known,as the
"Grace Quota" This parameter applies egually to all accounts,
The "Grace Quota" defines the number of segments eacl account .
nmay exceed its quota by for purposes of completing a program
run. When an account's quota has been exceed the mopitor will:
not allow any new files to be Created for that accot t, however
any files already belonging to the account may be extended ‘in
lenth until the "Grace Quota" has been reached. At the time tIL
system passwords for accounts 1,2 and 3 were defined the "Grace
Quota'" was automatically set to 1f segments and the quotas for:
accounts2 and 3 were set to maximum. ,

Passwords and quotas, including the "Grace Quota", nay be :
changed at any time by the system manager and w~ill take effect’

immediately. Account numbers cannot be changei, however accoum
ray be deleted, provided the account LS noL being used. !
LOGID is the program used to create the user accounts and modlff
passwords and guotas. Since it .can only be used by the uystem

manager the next step requires that a console be logged in’ . ;
under account 1. The follow1ng responces should bea tcrmlnated {
with the RETURN key.

1.) Tvpe: :
: LOGIN 1 SYST ‘

replacing SYST with the system password given during phase

I step 28. The LOGIN command will not print ox tne :

- terminal. }
2.) Next LOGID must be called by ty?ing:
| R LOGID |
LOGID prints opening instructions, and then asks:

2-15

'PLEASE ENTER DISK QUOTAt

suter a number whidh is a multiple of 25 (£-1575). This
‘number will e used as the disk quota for the accounts
- gefined or changed from this point on.

‘IDGID now prints an 'as}terisk and waits for an account
aumber, password combination separated by one space. Each
“aecount numbexr can be from 1 to 4 octal digits (no 8's or
gtg). Each rassword is made up of a maximum of 4 charactnrs
‘fall printable characters are legal). A maximum of 111
'different accounts may be defined, (148 user accounts plus
‘the 3 system accounts).

‘gyping CTRL/C causes LOGID to ask for the disk quota again.
cperefore a number of accounts can be entered using one quota
_and then typing CTRL/C allows a new quota to be entered for
¢+he next group of accounts which are definad. An example

@ialogue might appear-as follows:

1558.24 JOB 1 (A4, 01) KP4 13:3¢:08

' A .
S

.R LOGID

. TSS8 ACCOUNT MAINTENANCE --

*ACC'T # <SPACE» PASSWORD (RETURN TO CRFATE/CIANGE,
ALTMODE TO DELETE>

PLFASE ENTER DISK QUOTA: 1d#

* 14 DEMO ‘

732 TOUR

1215 JOoHN

166 HARD

1488 orTo

Ry

*

PLEASE ENTER DISK QUOTA: 75
* 1145 DECM

% .

“mo change the password or disk quota for an account, type the
account number and old password as above, followed by a RETURN.
106ID will ask for a new password. FEnter the new password 'nd
_#ype RETURN. . If.only the quota is being changed simply tvieao
.tf’zé RETURN key, no new password need be entered. 1In eithoer
cagse the quota last entered into LOGID will be applied to fhe

~account. For example:

% 1966 HARO -~ =
- CHANGE PASSWORD TO: D38N
& ’

PLEASE ENTER DISK QUOTA: 150
& 732 TCUR :

~ CHANGE PASSYORD TO:

13 DEMOD

CHANGE PASSWORD TO: PLAY

*.

sy

The disk quota does not apply to account 1. However,
whenever the system manager's password is changed IOGID w:ll

rouueot that the "Grace Quota" bn entered For example:

~* 1 SYST

CHANGE PASSWORD ‘TO: MNGR
GRACE$ 29 \ ' '
-]

To change both password and "Grace Quota“ or simply:

% 1 MNGR ’ o
CHANGE PASSWORD TO: -

GRACE: 18

*

H

to retain the current password but CHange the "Grace Quota" .

To delete an account type the account number and password as
above but instead of typing the RETURN key, tvpe the Altmode.
(ESC) dey. If the account is not being used 211 files i
belonging to the account will be deleted, ther the account wii
be deleted. When the account has been completely deleted tha

message: = - .

$ DELETED
Will be printed to the right of‘fhe password zs below:

% 1215 JOHN $ DELETED
n

When all desired accounts have been defined, type CTRL/B
followed by S and RETURN. ‘

% tRS

In order to create a listing of the -accounts -hat have been
entered the program CAT should be run as below-

R CAT
SYSTEM ACCOUNT. 26—FEB—75 102183060 =
PASSYORD CPU - DEV DISK QUOTA
1 003100302 00A311:05 . 12 18 CGRACG!
2 03100200 @0:00:00 373 1575
3 P0:@1310 G1:36325 | 4l 1575
180 PLAY 00300:00 00:00:00 = @ 150
732 TOUR ©0:00:00 00:¢0:00 2 150
1266 D%8N aez@9=0@¢r@@:®@zee‘~~ @ (s
1209 OTTO ©90:00:00 :20:00 9 199
1105 DECHM zz:e@:ee~u@zs@@nm@ o 5

R e (IR o Rl

RESET: YES
tBS

The RESET function causes the CPU and DEVICE time accumulato
for all accounts to be set to zero. ;Running CAT by typing

CAT:R will cause CAT to skip its llstlng phase and 1mmedlaff‘x
“ask RESET?

2-17 ~ Zoffﬂ.ﬂf“U

«LOGOUT

To complete phase III of the Build process type LOGOUT in
response to the dot monitor has printed at the left margin.

JOB 1, USER C @, 13 LOGGED OFF K@@ AT 18118157 ON 26 FEB 7%
RUNTIME €0:00:81 ¢ @. CPU UNITS)
ELAPSED TIME 02103124

This complet?s phage ITI. If the system configuration includes
DECtape ccntinue with phase IV, otherwise this concludes the
BUILDING process. EDUsystem-50 is ready to use.

Dumping the System To DECtape

To dump the newly completed system onto DECtape, restart
INIT. as follows:

1.) lower, then Raise the HALT (STOP) switch.

2.) Raise switches 4 and 4; lower switches 1,2,3,5,6,7,8
9,10, and 11. (The switches are now set equivalent to
4200 octal, the normal re-start address for Edusystem-50.)

3,) Press ADDR LOAD, then EXTD ADDR LOAD, then CLEAR, then
CONT. (PDP-8 and PDP--8/I press ADDR LOAD, then START.)

4.) INIT will print the message:

LOAD» DUMP, START., ETC?

NOTE: PFor simplicity, these instructions assume a system
with one disk and at least two DECtapes. For other
system configurations, see the general instructions
in Section B.

n. Next mount DECtapes on units 1 and 2. Then set units
1 and 2 to WRITE ENABLE (see chapter 4 Introduction to
programming for complete instructions). Then type)

DUMP. INIT will copy an image of the entire system
onto the DECtapes.

Wwhen INIT again prints:
LOAD» DUMP, START» ETC?

the entire system has been copied. Remove the DECtapes
and write some identification on the DECtape spools

pefore filing them. To make the system available for

use again, respond by typing START and complete the system
startup procedure. (As in phase I steps 29 throught 31)

a. General Instructions for Dumping Disks to DECtape -
The contents of an RS08 disk (226K words; will noc guite
fit cn a single DECtape (190K words). Part of a second
tape is required. 1In general:

Disks DECtapes

W N
YU W

Thus, for a one-disk system, the LOAD an¢! DUMP? process
requires two tapes. Loading and dumping always proceeds
as follows: The DECtape selected as unit one (1) is
used first, then DECtape 2, then, if necessary, units
3,4,5, and 6. If the system includes as many DECtape
drives as are indicated in the table above, setting up
for a LOAD or DUMP is very simple. Select consecutive
units, starting with unit 1 and mount the appropriate
DECtapes. The LOAD or DUMP routine will access them in
order.

If there are not as many tape units as there are DECtapes
to be loaded or dumped, it is necessary to use them more
than once. The LOAD and DUMP routines work as follows:
they use DECtape 1, then look for DECtape 2. If they
find it available (i.e., a DECtape unit has been selected
as unit 2) the transfer continues on this unit. Then,

if a third DECtape is needed, the routines lock for unit
3. If at any point a unit is sought but not found, the
routines wait for it to be selected. Thercefore, it is
possible to load the first tape of the system on unit
one, dismount the tape, place the second ‘zape on the

same DECtape unit, switch it to unit two, and have the
load continue automatically at that point. The following
procedure will dump the contents of two d:.sks on a system
with two DECtape drives. (Assume that the system has just
typed out LOAD, DUMP, START, ETC?. First set the
DECtapes to units 1 and 2 and write enable. Mount two
scratch tapes on these units labeled TAPE ONE and TAPE .
TWO. Now type DUMP. The system will completely write
DECtape 1, then automatically go on to DECtape 2. o
After the tape on unit 1 has re-wound, dismount it and
mount a third DECtape on this unit, labeled TAPE THREE
set the unit select to three, and then as the last

step, switch the unit to REMOTE. There is no need to,
hurry. If unit 3 is not ready when it is needed, the.
system will wait for it. The same procedure is followed
for a LOAD. ' :

This same general procedure is followed for any system
where there are not enough DECtapes to select them all
simultaneously.

When INIT again prints:
LOAD» DUMP,» START» ETC?

the entire system has been copied. Remove the DECtapes
from the spindles and write some identification on the
DECtape spools before filing them. To make the system
available for use 2again, respond by typing START and com-
plete the system startup procedure. (As in phase I steps
29 through 31.) : L

2-19

CHAPTER 3

PATCHING EDUSYSTEM 50

-wa information in this chapter is not necessary to operate

ziusystem 50. Most system managers will use the Edusystem 50
spttware exactly as it is supplied. Other users, however, will
want to make minor modifications or, in some instances, major syster
-iznges. This chapter describes the tools available for making sucl

f,?".’f':nges .

‘3.4 MODIFYING SYSTEM LIBRARY PROGRAMS
vydifying system library programs is an on-line process. Users who
,=n familiar with Edusystem 50's advanced Monitor commands will finc
i+ a simple procedure. Log in with the library password, load the
-wggram into core, deposit the patches, then save the program again.

» example, a user may wish to modify EDIT so that it considers eve

¥ character position to be a tab stop. The process is as follot
sr the 1970 version of Edusystem 50 EDIT:

+ LOAD EDIT

« DEPOSIT 2 =6

«SAVE EDIT

g31T 1s now changed on the disk. If the system includes DECtape,
Zump the whole system so that the changed version is stored on the
nackup tape. If the system does not include DECtape, but has a higl
speed punch, 2 new SAVE format paper tape should be punched with
2R, Otherwise, the change must be made everytime the system is
‘wyilt. Other system library programs may be modified in a similar

1,2 MODIFYING EDUSYSTEM 50

ormal procedure exists for making patches to the Monitor. 1In
er to understand this procedure, it is necessary to understand
. ¢ Edusystem 50 is stored on the disk. The five pieces of
\Vomitor (SI,FiP, INIT, TS8, TS8II) are kept on the first 20K of
«no disk. Their respective disk addresses are:

£
3
[

LA
o
»

-
y e
-

ST 00000-07777
FIP 10000-17777
INIT 20000-27777
TS8 , 30000-37777
TS8II 40000-47777

“s1¢hough the third section is referred to as INIT, it is actually
_sde up of several programs, including the TS5/8 initializer, a
}‘,abugging routine (XDDT), and a disk patch routine (DISKLCOK). To
-atch the system, it is necessary to bring fthese routines into

-pre. To do so, stop the system and then start it at 4200. INIT

is brought in and prints LOAD, DUMP, START, ETC??. At this poinf
the layout of core and disk is as follows:

Highest _
Core Field INIT SWAP and FILE
= "~ AREA x
TS8II
Field 1
Field O . TSs8
Core Storage
INIT
FIP
- ST

DISK STORAGE

Starting at 4200 always brings INIT (plus XDLCT and DISKLOOK) into
the highest core field in the system. Thus, it comes into differer
fields for different systems. o %

There are now two options for patching thevsystem: eithervpatch £}
disk using an overlay tape created with an assembler such as PALD,
or manually inspect and change individual words using DISKLOOK.

3.2.1 Patching Edusystem 50 Monitor with an Overlay Tape. THe
overlay tape is created by writing and assemkling a PALD program.
The first item on the tape should be a field setting for the track
number where the patch is to be made. The second item is an
origin for the desired address within the field. Then include the
data for the words to be altered. For example, to change wowds

6 and 7 of SI and FIP to 6213 and 5407, use the following program:

FIELD © /PATCE TO 51 .

*6 : ~ /START AT LOCATION 6
621335407 : /DATA FOR LOCATIONS 6 AND 7
FIELD 1 ; - /PATCEH TO FIP

.6 , S

621335407

$

Assemble using PALD, and punch out the binary tape. (XDDT users
may find this patch helpful.)

Load the overlay tape into the paper tape reader. In response
to INIT's "LOAD, DUMP, START, ETC??" message answer OVERLAY Or
simply). When the tape has been read, the patching is finishec,
I there was a checksum error, a message "TAPE READ ERROR" will
printed. The data previous to the most recent field setting wi.
have been written on the disk and thus may be incorrect. *

s

" 2isk before iz does any important operation. Therefore, any patche
. will become effective at the next startup and remain until the syst

—_ .-
>

1,242 patching Edusystem 50 Using DISKLOOK - When INIT comes in,
iz prints LOAD, DUMP, START, ETC??. To start the patching proce-

“KLOOK is now running, allowing the user to examine and modify
sle disk registers. To examine a register,type it's address (in
al) followed by a colon. DISKLOOK prints the present content of
2t register on the disk and waits for a new value to be typed.
.ter the new value by typing 1 to 4 octal digits. Type the RETURN
.oy to close the line. If a register has been opened but does not
rs2d changing, type the RETURN key. To automatically open the next
.~uential register, type the LINE FEED key instead of RETURN.

sl g

p-merber that disk locations are actually 7-digit addresses. For

92

-
7%
'
: %
s

=y 1n

e

it
[as

a

}i’ <3

"
%

“w

=

2

jn]

" pxeaple, location 2104 in TS8 is stored in disk location 32104.
. rccation 10 in FIP is 10010, etc.

yen all desired patches are made, type CRTL/C to return to INIT.

An example of the usage of DISKLOOK:

LOAD, DUMP» START» ETC? P

2306: S317 7604
-S 6100t 6637 1220
40212 644) 6051
40220t 6451 606l
(CTRL/C typed by
LOAD, DUMP» START», ETC?

. gocation 2306 in TS8II is changed from a JMP to a LAS. This

' erange allaws the system manager to examine selected Monitor regist
by entering an address in the switches. If this patch is made,

. .ser programs may not use EAE Instructions. The pointer in locatic

6100 of SI 1s 2hanged to point to an error return. This patch

‘sigables-the TALK Command. Finally, locations 0212 and 0220 of

~5911 are changed. This patch changes the device code of a termina

. #rom 44, 45 to 05, 06. (Note the exact locations may differ in
- #yrure Monito-ss. These examples are for illustrations only.)

11 changes to Monitor are made on the disk. Starting the system
rings TS8 and TS8II into core from the disk, SI and FIP are
wapped in by the system as needed, and INIT reads itself from the

v is rebuilto_

bmce patched, the system should, of course, be dumped to DECtape

+5 preserve the patches. Systems without CECtape must be repatched

.very time they are built.

5.3 CONTROLLING MONITOR EXECUTION

~+e XDDT prog:ram, which is always in core with INIT, is vervy

" jseful for testing any modifications to Monitor.

. shere are two ways to keep XDDT in core while the Monitor is in

- operation. cn systems with at least 16K, initialize the system
. egecifying one fewer user field that normal. Then, insuring that

INIT (with XDDT) is in the highest field, start the system. The
highest field will not be used by the Monitor, and XDDT will
remain there. '

Another alternative for getting XDDT into core is to initialize ¢ty
system, and answer "YES" to the question about loading EXEC DDT.
The result will be that when the system is started, XDDT will be
placed into field 1 in an area normally used for free core. If
EXEC DDT is loaded, the Monitor capacity will be restricted
considerably, but otherwise will not be affected.

Once Edusystem 50 is up with XDDT in core, the system must be halt,
to start XDDT. Press the HALT key. If the EVMA=0 and the MA=5200,
fine. 1If not, press CONT and try again. Nevar attempt to halt

the system if any I/0 is in progress. Once tiae system has been ;
halted at 5200 (this is the null job), restart the system at 7000
in the field of XDDT. XDDT may now be used to examine registers, .
set a breakpoint, etc. Information on the operation of XDDT is]
available from DECUS, order number 8-127. To restart the Monitor
after being halted at 5200, start at 4201. (XDDT, type 0#4201').'5

Type CTRL/C to return to INIT from XDDT.

CHAPTER 4

LOAD, DUMP, START, ETC. USING INIT

;.1 HOW TO OBTAIN INIT

7 is the program which allows the user to load, dump or start the

wstem. Whenever "LOAD, DUMP, START, ETC?" appears, INIT is avail-
e. CTRL/C may be typed at any time to return to the entry point
I

-n start INIT 1if it is already in core, start at 4200 of the field
ware INIT is located. INIT can be found at various times in
gyﬂd 0, field 2, and the top field of the system.

"-the Monitor is running, start at 4200 of field 0. TS8 includes
. pootstrap starting at 4200 to read in INIT from track 2 of the

ku4<to the hlghest field on the system, and transfer control to it
v{the Monitor is on the disk, and the system has an EDU bootstrap,
r,vthe SR to 5350 and press and raise the SW switch.

< the Monitor is on the disk and there is no EDU bootstrap, load
n;follow1ng into field 0, then start the computer at 7750.

Address Contents
7750 7600
7751 6603
7752 6622
7753 5352

7754 5752

I:the above measures fall use the rim or binary loader to lcad
«he paper tape of INIT.

INIT OPTIONS
c3TL/C RESTART INIT N

Build TSS/8 from paper tapes.

[=+ I

¢ o Transfer 4K sections between the system disk and core.

~ Dump the system disk to DECtape.

w

Bootstrap to a DECtape on unit 4.

T3

Initialize TSS/8 parameters.

L3]

Bootstrap to RK8E unit JZ.

i

Load the system disk from DECtape.

ot

m Compare the contents of two core fields.

i} //

4-3

-z, at any time, a drive is not ready, INIT waits for it. Just
. .*ant the drive when ready, and the tape will start. At the end
~+ aich tape, the tape will automatically rewind and unload.

¢ -sve the tape, label it with the unit numbers, and save.

z.4 LOADING THE SYSTEM FROM DECTAPE

3~ any time, the system may be restored to the state when the dump
M pECtape occurred. To do this, mount the dump tapes on the same
.-3-3 they were oa for the dump, get INIT, and specify L for Load.

 ¢.5 INITIALIZING THE SYSTEM

vy change any Of the parameters (except for passwords), defined
st system build time, get INIT, and specify I for INITIALIZE. One
. #2y now enter a new LOGIN message, change the number of user fields,
- &‘7« Upon the question "WRITE ZERO SYSTEM DIRECTORY?" answer no,
" a» all of the files on the disk will be destroyed. If the LOGIN
" gasz2ge is the only parameter to be changed, a CTRL/C may be

PRt

. ..-ed after the ALTMODE. The following is an example.
LOADs DUMP,» START» ETC? 1

NEW LOGIN MESSAGE? Y N

END WITH ALTMODE

THIS 1S THE LOGIN MESSAGE!$

LOAD EXEC DDT AT START-UP? N M vag el
USER FIELDS - 2 b ' PR
ENABLE 'S FEATURE? &) I e

68 HERTZ POWER? Y

WRITE ZERO SYSTEM DIRECTORY? N
i.6 USING TAPE READ OR WRITE
& satlocted number of disk tracks may be loaded from or dumped to
: ,..f.gggape, To do this, get INIT, and specify T for TAPE. Specify

.wa=ner to read the tape (load the disk) or write the tape (dump),
,g:,g“how many tracks are desired (in octal). The following is an

- sample.
LOAD» DUMPs START, ETC? T

TAPE READ OR WRITE -~ R
-5

» = USING THE 4K DISK-CORE TRANSFER

Lowr e ¥

s cnlected core field may be read from or written to the disk,
4’“;, from any core field. To do this, get INIT ar}d specify)
»" emen specify whether %o read or to writa ¢he disk, *ha fiall

~..=nar, and track number (in octal). Type CRTL/C to terminate
wig routine. The following is an example.

LOAD» DUMP, START», ETC? C

READ OR WRITE - R
FIELD NUMBER - 3
TRACK NUMBER - S

4.8 READING A BINARY TAPE

INIT contains a modified binary loader beginning at 7777 of th
field where INIT is. INIT's binary loader automatically choose
low-speed or high-speed paper tape reader. If the device read
responding, the loader times out in a few seconds, giving an

error message. This is not a problem unless the tape is loadi:

into the same field as INIT. If there is an error condition, !
results will be unpredictable.

A binary tape may also be read by getting INIT, and specifying
(Where n is the number of the field to which the tape is to be
read). If a field setting for field n is encountered it will :
ignored. If any other field setting is encountered, the procc
willhalt with that field in the AC. Press CONTinue to ignore °
For those using a PDP-8/E, set the data field as desired and g
CONTinue. '

4.9 ZEROING A FIELD

To write a zero in every location in a field, get INIT, and ty
Zn, where n is the field number to be zeroed. ’

4.10 COMPARING FIELDS

To compare the contents of any two fields, get INIT and specity
for Match. Then enter the two fields desired and the address :
start at. Any differences between the two fields will be prinr
along with the address.

The printing may be interrupted by typing CTRL/C. The printinc
occur on the line printer if present and ready, or else on the
terminal. If SRO is on, any mismatch with a zero on the first
field specified will be ignored. Type CIRL/C to halt printing.
The following is an example.. ‘ .

LOAD> DUMP, STARTs ETC? M
FIELD NUMBER - 0

FIELD NUMBER - 2

START AT - @

pevo 5401 0072
9081 4200 S4e2
2005 0477 0444
0442 09473 2477

4.11 DUMPING CORE

To dump the contents of core in octal, get INIT, specify W, and
then give the desired field and starting address. Each line prin:
wili contain a core address and eight data words. A dump may be
interrupted bv tvping CTRL /C. The dump goes to a line prinkter
if present and ready, or else to the terminal. The following is ;
example. '

LCADs U732 START» BTC? W
FABLD LU - 6
STaRT AT - ¢

0000 5401 42090 @033 0033 0124 2477 Q833

Q124
00186 0637 0010 0011 0012 @613 3553 8215 @916
0029 0020 9621 P22 0823 0924 0825 0226 8827

2 12 BOOTSTRAPING TO OTHER DEVICES

.~z INIT is running, a bootstrap to DECtape or RKOS'may be- performed.
. i-otstrap to an operating system on an RKO5 cartridge, load the
:,:i.,.;:j,dge on drive zero and type K.

e~ woptstrap to 'a D:E:Ctépe, mount the tape with unit 0 or 8 selected,
#:4 type E.

ns roboot INIT, or another operating system which may be on the
ggé"’\ disk, type R.

USING XDDT UNDER TSS/8

i ann i > 3 i ich is the
.- INIT is running, type X to jump to locat}on 7000 \?rhlc
mﬂfxg of XDDT. XDDT is an octal - syml_:ollc debugging program
,, preserves the status of the program interrupt system at
leazkpoints. (XDDT is DECUS order No. 8-527)

| i i : ield. 1In

= upies locations 4434 through 7577 of any fie .
'1“'”;',;?»22,“; psymbols may be defined by the user. These symbols will
."é";l’:'.;y 1é>cations 4433 down towards 000, destroying INIT or free

v
SO e W

4. XDDT sets a breakpoint, it uses locations 6 and 7 of every

ey field. This may cause problems if an attempt is made to
"p‘”'"-:.;.eakpoint while user programs are running.
o E-a

i ~x i ightly from the
Lo escribed here, has been changec? S!.lgh
;“H"_“.?:»&isa?railable from DECUS. See the listing of INIT for these

! o0
it ‘.‘.,n‘: ws d

CHAPTER 5

USING EDUSYSTEM 50

s LOGGING IN

otect the system from unauthorized use, each user must be

jified by an account number and a password. For example, LOGIN
¢ is typed if the user's number is 456 and the password is DEC.
+0GIN command is not echoed on the terminal in order to protect
rassword.

.
LS
-

7T

KLay

3 ¢ ¥ 4

oW

: s E7ATES OF THE SYSTEM

. gmborad can be in one of three states: not logged in, SI (or
»'M:w!’ mode, or user mode (not to be confused with the hardware

.- Mode, UM light on PDP-8E). When the keyboard is not logged in,
vw cortain commands (such as LOGIN) are effective. When in SI

I, the system is waiting for a command to be typed. Anything

»-j ig considered to be.a_command. A user program may or may not
"{a the process of running at t':he time. If a program is not runnir
¢ Manitor prints a dot to signify it is ready. When in user mode,

~ jvhing the user types is placed in a buffer, waiting for his

i-ram to ask for it (with-a KRB, maybe). In summary, each characte
_,;;,q,.: shan CTRL/B and CTRL/C) typed at the keyboard must go to one
"ngwa places. In user mode, it is saved for the user's program.

wanitor mode, it is saved and passed to SI as a command to the

spECIAL CHARACTERS: RUBOUT, LINE FEED, CTRL/B, CTRL/C
STRL/S AND CTRL/Q

' yo characters have special immediate action and need not e
qewed with a carriage return to be effective.

a xeyboard is not logged in or is in Monitor (SI) mode, a RUBOUT
gna the last character typed to be deleted. If the terminal 1is
421 in the rubbed-out character is printed to help the user make
4.ztions. In user mode, RUBOUT is just another character, which

gorran may interpret in any way. Most programs delete characters
& AUZOUT is typed, usually typing a backslash or backarrow to
j-ate this function.

s a terminal is in SI mode, a LINE FEED can be typed to cause
-5 nrint out the current command line. The procedure is
.jcularly useful if the user is in the midst of a complex

.~~4 and has used a number of RUBOUTS.

/3 {orinted 4B on terminals) places the kevbcard in Monitor

»nd clears the user's keyboard buffer to make room for a
;and, The rest of the line is given to SI as a command. ZIf
vser's program is running, it continues t;o run. (However, 1if
cragran tries to do terminal I/0, execution is temporarily

pnded until the user finishes the command.)

CIIAPTER 6

RESTARTING FEDUSYSTEM-50

. ..»as 2 details the building procedure for the Monitor. Once this
:ﬁn done, it is not normally necessary to repeat these procedures
(g-irs it is desired to start up EduSystem-50. Rather, a procedure
,‘,‘,gj‘il‘:;:i “pootstraping” or "booting" is followed.

i Ak
Dy st

e several methods of booting EduSystem-50. The one which
appropriate at any one ?ime depends upon several

".mazg, such as the configuration of the computer involved, and
|y gratae of the disk and core memories. The first method listed
w:; ig the easiest and is ap;?ropriate most of the time. The

.. wwo apply if the system disk is intact, while the following
"y asply only if the system ha_s been dumped to DECtape, and this
. lu is to be loaded bac;k on to the system disk. If all else fails,
w gy 5hem must be rebuilt from paper tapes, as detailed in Chapter

i pIELIMINARY PROCEDURES

o using any of the methods listed below, it is necessary to
jze the computer system. If one of the methods is attempted
fails, this init_ialigation should be repeated before trying
¥ i anger method. To initialize the system: Ensure that the power
Y ns computer is on, and that the switch is not in the PANEL LOCK
. wicn. Also make sure that the console terminal is turned on
“;'.,5 cn-line and ready. Now press and raise the HALT switch, raise
;;«;;;5 STEP switch, and press the CLEAR switch. This completes

initialization.

Lo
oy B

T Y

)

v o T e
ool
Ea il e

METHOD 1
Aoy VTY G

"":""‘" gwitches 0 and 4, while the others (1, 2, 3, 5, 6, 7, 8, 9,

;ﬂd 11) should be lowered. Now press the ADDR LOAD, EXTD LOAD,
'en and CONT Switches. The console terminal should print “LOAD,
R ?ART, ETC?" at which time the system may be STARTED. Y X &0

“ I3}

‘4\,

¥

S T

METHOD 2

54 vathod applies if the system disk is intact and if the computer
;tf a"';.gxa—EG. Method 3 is a substitute for systems without the
,.+.e5. Users who are not familiar with the MI8-EG may try this

P’ w3 anyway. LEf method 3 works where this one will not, the
e does not have a MI8S-EG. o
<3 5S¢

*‘vv'a s‘ditches C’ 2’ 4' 5, 6' and 8) while S'ﬁ’itCheS l' 3') 9, Faw;
“}'11 should be down. Press and raise the SW switch. The terminal
t’ “1 .=in= "LCAD, DUMP, START, ETC?" at which time the sy3t:zn

e STARTED.

]

wn
La W

METHOD 3

prig method applies whenever the contents of the system disk are

gyt

6-1

e e 2222 n0NS s20wWN In the table below. For

step in the "bLa, place e.ch of the computer switch register swi:
numbered O tec 11 either in the up position if the corresponding t
entry is a 1 or in the down position if the corresponding table e

is a 0. When all 12 switches have been set to correspond to a li
in the table, follow the instructions in the right hand column anc
proceed to the next line.

At the completion of the last step, the mnsole terminal should
print "LOAD, DUMP, START, ETC?" at which time the system may be
started. ' '

Table 6-1 RF08/DF32 Disk Bootstrap

Step # Octal Switch Register - And Then
Values Setting :
012 345 678 91011
1 0000 000 - 000 000 - 000 pPress EXTD ADDR LOAD
2 7750 111 111 101 000 press ADDR LOAD '
3 7600 111 110 000 000 1ift DEP key
4 6603 110 110 000 011 lift DEP key
5 6622 110 110 010 o0l0 lift DEP key
6 5352 101 011 101 o010 lift DEP key
7 5752 101 111 101 oO01l0 1ift DEP key
8 7750 111 111 101 000 o press ADDR LOAD and -
press CLEAR and 1
press CONT ‘
METHOD 4

This method applies when there exists a set of dump tapes which w.
dumped previously, which it is desired to load onto the disk. 1In
addition, this method makes use of the MI8B8-EG, and assumes that t

dump tapes have been specially prepared using DTBOOT (see below).
Method 5 is a substitute for systems without a MI3-EG, and Method

is used when the dump tapes have not been specially prepared usxn

DTBOOT.

Place dump tape number one on a DECtape drive, write locked. How
instead of selecting unit 1, place the unit select switch at O or ?
8.

Raise switches 3 and 4, while the others (0, 1, 2, 5, 6, 7, 8, 9
10, and 11) should be down. Press and raise the sw switch. The~

should move for a few seconds, at which time the console should i’
"LOAD, DUMP, START, ETC?" o L

Turn the DECtape unit select switch back to its normal poéitibn‘W;
1, and LOAD the system as described in section 4.4. After the LG
has been accomplished, the system may be STARTED. oY

METHOD 5 : R

Ty

This method applies whenever it is desired to load a set of dump
tapes tc the system disk which have been prepared with the prog:a
DTBOOT. If the tapes have not been so prepared use method 6.., :

6-2

i
, ,i of selecting unit 1, place the unit select switch at 0 or 8.

. prriorm the switch manipulations shown in the table below.

a2 tape number one on a DECtape drive, write locked. However,

_{,'.‘.»& step in the table, place each of the computer switch register

Paahag numbered 0 to 11 either in the up position if the correspondinc

4’ catry is a 1, or in the down position if the corresponding

w eatTy is a . When all 12 switches have been set to correspond
"'y 1ine in the table, follow the instructions in the right hand
‘_l’.s;m.. and proceed to the next line.

Table 6—2‘TCOl/TC08 DECtape Bootstrap

o Octal - Switch Register And Then

7 values Setting

s 012 345 678 91011

T 0000 000 000 000 000 press EXTD ADDR ILOAD
. 7613 111 110 001 o011 press ADDR LOAD

'y 6774 110 111 111 100 1ift DEP key

i 1222 001 010 010 010 lift DEP key

- 6766 110 111 110 110 1ift DEP key

o 6771 110 111 111 o001 1ift DEP key

o 5216 101 010 001 110 1ift DEP key

o 1223 001 010 010 o011 lift DEP key

. 5215 101 010 001 101 1ift DEP key

o 0600 000 110 000 000 1ift DEP key

" 0220 000 010 010 000 1ift DEP key

M 7754 111 111 101 100 press ADDR LOAD

I 7577 111 101 111 111 1ift DEP key

T 7577 111 101 111 111 1ift DEP key

if 7613 111 110 001 011 press ADDRLOAD and
o press CLEAR and

‘ : press CONT

hn- +na last step above has been performed, the tape should move
_7, 4 fd seconds, and then the console terminal should print out
AT, DR START, ETC?"

o AR unit select switch on the DECtape back to its normal position

; aad LOAD the system as described in section 4.4. After the
'ﬂt'ms peen accomplished, the system may be STARTED.

i : ‘ METHOD 6

iy method 1is us2d whenever it is necessary to load DUMPed ta
s “%a"e not besn specially prepared using DTBOOT.

roeen

1'}“-- ~n chapter two, following the steps for building a new svstem
;f ~na message "LOAD, DUMP, START, ETC?" appears on the conscle
LA as socn as this message appears, raturn to the follrwing

.
oy
ot Il S

L ”
ﬁ':f'ﬂ».’-?-

~se to the question "LOAD, DUMP, START, ETC?" the system may
uADed as described in section 4. 4. After the load has been
shed, the system may be STARTed.

\# |
gzt
;‘ 6-3

-

5

v (- (\

METHOD 7

When all else fails, the system must be rebuilt from scratch, as
detailed in chapter 2.

PREPARING TAPES USING DTBOOT

To specially prepare a set of dump tapes using DTBOOT, take tape
number 1 of the set of dump tapes, and mount it on a DECtape driv
However, instead of selecting the normal unit 1, place the unit ¢
switch at O or 8. Place the DECtape unit in the WRITE ENABLED
position. Now, with the EDUsystem-50 monitor in operation, type
"R DTBOOT" at any logged-in terminal (the program DTBOOT must,
of course, be stored in the system library prior to this step)..
all is well, the tape will move (possibly only a fraction of a r:
and #BS will be printed. The completes the preparation of the te
This preparation is permanent for this tape, and will normally ne
need to be repeated no matter how many times the system is LOAL
from or DUMPed to that set of tapes.

A NOTE FOR 0S/8 USERS:

INIT may be used to advantage when using the system disk for
running 0S/8. Load the paper tape of INIT using standard procedu
for binary paper tapes, and start it at 24200. Even better, crea
a SAVE format file of INIT, and simply run it. When INIT asks ‘
LOAD, DUMP, START, ETC?" dump OS/8 to DECtzpe exactly as if it
were EDU-50. At the completion of the dump, INIT will boot the .
system which is on the system disk, which happens to be 0S/8; hen
another 0S/8 monitor dot will be printed. Now, EDU-50 may be loz
At any future time, when it is desired to run 0S/8, get back INIT
and LOAD the 0S/8 tapes as if they were TSS/8 tapes. At the :
completion of the load, INIT will boot in the system disk, which !
contains 0S/8 again, and an 0S/8 monotor dot will be printed.
Caution: do not attempt to use DTBOOT on these 0S/8 dump tapes, @
do not trv to boot in these tapes directly. Use INIT. | o

NOTE TO VERSION 3 USERS

The program BOOT may be used to boot EDU-50. When not running of
of the system disk, typing BO/RF will bring in INIT from the '
system disk. When not running from DECtape, typing BO/DT will br
in INIT from DECtape unit O, provided that it has been specmally
prepared using DTBOOT. _ ,

6-4

CHAPTER 7

DETAILED MONITOR CPERATION: I
. . SHARING TIME
3 e S e ST

ine most fundamental job of a timesharing Monitor is the sequent

sacution (generally for short bursts, or quanta of time) of a number

|. g
et

. 2% user prograus. This implies that the Monitor has a place availabl

o v -

Are a user program can be brouqht to execute, and a place to put

Juar programs when not belng run. EduSystem 50 reserves one or more

v fields within the PDP-8 as areas in which to execute user pro-

2218 A user program, ‘and hence a user area, is 4K words long.

m":s’em 50 may have from 1 to 6 user areas, depending on the amount

4 sore available. Similarly, EduSystem 50 reserves a portion of its
41y as a place in whlch to keep programs not being executed. These

R areas" are also 4K each The number of user cores is not

e 4 ¥

ycessarily dependent on the number of simultaneous users; the

wAstaT simply uses as many as it has available. The number cf swap
igpas, OO0 the other hand, is directly related to the number of simul-

Lanetus asers for which the system is configured. There is one

..ticated 4K swap area on the disk for each simultaneous user

User programs are executed by EduSystem 50 by bringing them into

sy vsar core from their swap area, executing them, then returning them

.. sreir swap area on the disk, so that the next user program may be

cwpigat in. User programs may be brought into any available user
put when they are swapped out, they always return to their

,rsisned swap area on the disk.
KU]

c4uSystem 50's swapping algorithm may be best illustrated by

yi37ing a very simplified situation. EduSystem has a number o:
«a» programs running within it; each is compute bound, none Is
i Y ~ -

fese

ovaazed in any input/output. Monitor first decides which user to

T+ chooses the user who has waited to run the longest. It

~am mext.
.

goocdules this user to be brought into the user core. However, it

.an only bring

this user intc a user core which is unoccupied. Therefore, it must

empty one by swapping its present inhabitant (another user program)

out. Before doing this, Monitor saves the running state of the pro-

ctam to be swapped. This information, the AC, PC, LK, and EAE regis-

~e@ts, 15 stored in Monitor core. The Monitor then writes the user

program (whose state is saved) out onto its respectiﬁe swap area. Now’

the user program selected to run next may be brought into core. Once .
it is in, its run state is restored (the AC, 'PC, LK, and EAE registefs‘A v{“
of each user are stored in the Monitor when they stop running) and

the pregram is started. This procedure is continued as long as the
user program needs to run. ’

Obviously, the Monitor has to maintain status irformation about
each user program, whether or not it is in core. Indeed, it must
maintain more information than just a user program's run state. Iti
must maintain all the information it needs in order to decide whether o
or not a user program needs to be run. In actual operation, most of L
this s’ atus information deals with the state of a user program's ' s
input and output. In our simplified case, where no user is doing I/O;J
the-only information that needs to be maintained is whether or not
the user has finished. If a user program completes its run, the . .
Mcnitor remembers this fact. The program is swapped out and remains .
out. If a program does not complete its run at the time when it must’
be swapped out to allow another user to run, it is remembered to be

still runnable. When its turn comes again, this user is swapped in to
run some more.

L FILE AREA 7

b

¢ : TC ™

SUPRRDEPSEIRE IR

JOBn SWAP AREA

- USER AREA M2 JOB 2 SWAP AREA Cob gy
USER AREA #1 §<: JOB 1 SWAP ARE A ‘ R

RESIDENT MOMTR
MONITOR (20K) X
I
i ; .
CORE B ~ DISK STORAGE - , o
08-0888 s i
h
- Y
Figure T-i. 10X ZduSystem 530 Configured fcr n User Prcgrams PR

The process of deéiding which user program to run next

 (scheduling) is an important function of the Monitor. The Monitor
~vclically scans a table which contains the status information for
cach user precgram. If the user program being checked by the Monitor
coes not have to be run (is not runnable), it is skipped and the
Monitor goes on to look at the next user program. When it finds a
'gger program which needs to be run, it goes through the process of
gwapping out a user program which has just been run but which is still
in core, in order to free a core field. It then brings in the user
program job which was selected to be run, starts it and allows it to
run for a fixed time quantum. At the end of this time quantum (as
indicated by a clock interrupt) Monitor goes to the next user program
to see if it 18 runnable. When it has looked at all the user programs,
the Monitor scheduler returns to look again at the first job. It then
=antinues to cycle through the table of user programs.

In a system with a single user field, the scheduling algorithm is
guch that some previous user program job must always be swapped out to
make room for the next. Once a user program is brought in and started,
there can be no further scheduling activity until it has completed its
quantum. Similarly, once the user program in core has started to be
swapped out, the system must wait until the next user program is
completely swapped in before it can do anything. (A user program may
only be run when it is completely in core.) The only special schedul-
ing case for a l-core system comes when only one user program is
active in the system. User programs are not automatically swapped
out when they complete a time slice. They are only swapped out when
another user program must be brought into core to be run. On the cther
hand, when the scheduler decides that a given user job should be run,
jr does not blindly swap it in. It first checks to see if it is
already in core. Thus, if only one user program is running, no swap-
ning occurs. Wwhen the program has been run for a guantum, its run
state is saved but it is not swapped out. The scheduler scans
through the table of user programs looking for one to run. Since no
other program needs to be run, it gets right back to the program just
run as the proper one to run next. Finding this program still in core,
the scheduler simply restores its state and restarts it. Thus, except
for these periodic checks, the lone user job runs continuously.

The scheduling gets more complicated, and more 2f£ficient when
rhere is more than one user core available. The scheduler maintains,

in addition to its table of all user jobs, a table of all user jobs
which are in user core. (A job may be in core, on the disk, or half-
way between when it is being swapped.) It actually scans the former
table tc decide which to swap next and the latter tzble to determine -
what to do in the meantime (while it is waiting for the swap to be
completed). The swapping, once set up, happens asynchronously with
respect to the scheduling. Once it has set up the s#ap, Monitor always
goes to its table of in-core programs looking for one on which to .
work. When a user program is scheduled to be swapped out, it disap~b
pears from the list of in-core programs. Eventually, the next programt
scheduled to be swapped in will be read into core. .1t then appears '
in the table of in-core programs and is subsequently run.

In the case of a system with two user fields (16X system) the
table of in-core programs has two entries. Entry one indicates which, .
if any, user program is in field 2; entry two indicates which is in
field 3. In actual operation, there will seldom be user programs in
both core fields at once. 1In a 2-user-field system (again assuming
cur case of several running, compute-bound user programs) one field
will always be swapping while a program is running in the other. This
1s because the quantum of time in which a user érogram is allowed to -
run is (roughly) equal to the time it takes to do a swap (a write
followed by a read). This is explained in the following paragraphs.

A user program which has just been run is scheduled to be swapped . L
out. In the table of in-core programs, it is marked as no longer in
core. The scheduler then determines if there is anything in core to
be run. The only candidate is the other user core. If the timing is
right, a user program will just have finished beiﬁg swapped in.
Scheduler then sets up and runs it. (Note that if this swap is not
completed until after the second swap was stérted, the Monitor must
wait for it to be made. This situation would occur if a transient
error delayed the swap. On the other hand,.if latencies on the disk
were minimal, the swap might be completed befpre the otaer program
completed its run quanta. In general, however, these two events wi11‘ f
be almost simultanecus.) At this point, a user program has been
started at about the same time another is to be swapped out. At the.
end of its run quanta, the swap should.be complete and a new program '

in and ready to run.

Thus, at any'giveh time, one of the user cores is being swapped
while a user program is being run in the other. The data-break
capability of the PDP-8 allows these two operations to occur simulta-
neously. Cy;les are stolen from the running program to allow trans-
fers to occur.in the other field. There is (in theory) no time lapse
petween the running of user programs. The next one is always ready
at the time the user program being run finishes its time slice.
gsing the standard time slice of 200 milliseconds, this allows five
users a second to be run.

This situation is in sirohg contrast to the situation with a
single-user core. . Again, assuming a 200-millisecond time slice, only
half as many usefs may be run in the same time. This is because the
system cannot‘run one user while swapping another. During the 200
aillisecond swap timg. the system must simply wait for the swap *to be
completed. In the l-user core system, swaps and runs alternate; in
a 2-user core system, they are simultanecus. It is a foreground-

bvackground operation.

The scheduler deéends on various interrupts to continue this
process. S;ecific;lly, the scheduling is driven by the clock and disk
completion interrupts. After every successful swap and after every
1gg milliseconds the scheduler is run. If the scheduler is run
pecause of a clock interrupt, it checks to see if this is the second
such clock interrupt it has encountered since it started to run the
present1y~running user program. If not, then this user program has
ot had its full quantum of runtime. It is therefore restartad.
when the second scheduler clock cqll occurs, indicating that the user
program has run for a full 200 milliseconds, it is marked as having
peen run. The scheduler then looks through its table of in-core user
programns until it finds one to run. If no other programs are in core,
it sees if a swap is in progress. If a swap is being made, the
scheduler knows that eventually a new user program will be in core.
1t returns and runs the same program. Eventually, the program being
swapped will be in core and run. Even if there is another program
in core, the scheduler checks to see if a swap is in progress. If it
ig, the scheduler simply starts and runs the next resident user

program.

whenever the scheduler finds there is nc swacping, i% checks “o
see if a swap is necessary. A swap is necessary if a user program is

on disk which needs to be run. Thus, when the scheduler finds no
swapping taking place, it checks its table of user programs to find a
runnable, swapped-out user program. If it does, it schedules this
program to be swapped in, (Cenerally, this means swapping out anotherxr
user's program.) Once the scheduler has set up the swap (if one is
required) it finds the next resident user program and starts it.
{Note: the check for swapping activityhactuallykoccurs every lﬁﬂ‘,
milliseconds to assure that the swapping rate is maintained.)

A swap is scheduled by putting a swap reques: in the disk qﬁeue.
If the disk is active at the time the swap is scheduled, the transfer
1s not initiated immediately. However, if the disk is inactive, the
transfer is initiated (by setting up and executing a DMAR or DMAW)
immediately. Either way, the user prograﬁ to be swapped is removed
from the table of in-core users. It is considered no longer to be. in
core at the time it is scheduled to be swapped,.even though it may
noct actually be written out until sometime later.

Every time the disk completion interrupt occurs, a check is made
tc see if there are any requests pending in the disk queue. If there
are, the next is started immediately. If the disk transfer just
completed was a swap-in, which means ‘that a new user program is now
in core, the table of in-core programs is updated to reflect the new

arrival.

Thus, scheduling consists of two asynchronous processes. Disk)
handlers, running off the interrupt, are continually swapping users in
and out of core areas. As they do this, ﬁhey update a table which
indicates which user programs are in user cores. These routines wor&‘_b
on a queue of disk requests. As soon as a transfer is complete, as ‘
indicated by a disk completion flag, the disk routines immediately
ctart the next transfer on the queue.: While the disk handlers are
processing the requests on the disk queue, other scheduler routines
are deciding what swaps, if any, to 40 next. Once they have made
that decision and queued the appropriate disk request, they scan the
table of in-core user programs in order to select the next user pro- -
gram to be run. This table is updated by the disk~-swap handling partb
of the scheduler. Thus, a user program which the scheduler selects to
pe swapped in will eventually be swapped into a core and hence appear;
in the table of in-core user programs. The scheduler, scanning th;s
table for a resident job to run, will find and run it.

Tt is important to system efficiency that, at the time the sched-
uler goes to the table of in-core user programs to find one to run, it
finds one. If it does not, it schedules a non-job, the "null job,"
2> be riu.,. This null job is run until a valid user program is in
core. {The null job is a tight loop in Monitor core which increments
the accumulator. It does not occupy a user core. It is not swapped.)
Clearly, in a l-user core configuration, the system spends a great
deal of time in the null job. From the time a swap is initiated
until it is completed, the Monitor can do nothing but run null job.

In a 2-user core system, the effeciency is much greater. The back-
‘ground swapping assures that a new user program will be in core at
about the time the currently active program completes its time slice.
More than two user cores virtually assure that time will not be wasted
running the null job.

The pravious discussion of scheduling is based on some radically
simplified assumptions. We assumed a steady number of compute-only
jobs. With a more normal mix of programs, scheduling becomes much
mcre complex; user programs are being continually started and programs
are being continually started and halted. Those that are running may
need to be interrupted for input/output. All this increases the
complexity of the scheduling. How these additional complexities are

handled is discussed later in this manual.

7.2 SOME DEFINITIONS

In the preceding discussion, we have referred to the programs
running in EduSystem 50 as "user programs”. In fact, in the system
documentation, they are referred to as "jobs”. Jcb, in this sanze,
means scmething slightly different than user program. t alsc mears
something different than "job"” as it is used in batch processing systers.

A job in EduSystem 50 is the capacity, or capability, to run a
program. A user, when he logs in, is assigned a job. He keeps this
job, which has an associated number, until he logs out. A l6é-user
system is thus a 1l6-job system. At startup, it has a pool of 16 avail-
able jobs which it assigns to individual users as they log in. Once
it has assigned all its available jobs, the Monitor cannot accept

more users until one logs out and releases his job.

The distinction between a job and a user program is clearest

rignt after logging in. The just-logged in user sas a Oo. He 1as

7-7

been assigned a terminal with which to intercommunicate, and a 4K swap
track in which to store his program. However, as yet he has no user
program. In short, the job is not the program, it is the capability
tH run a program. v

Once logged in, users are known to the system only by their job
numbers. The Monitor simply schedules and runs jobs. The job numbers
for a l6-user system are 1 through 16. ‘The null job is assigned job
number zero. Users who are trying to log in are assigned job numbers
{since a job number is required internally even to get through the
LOGIN procedure). If the LOGIN is successful, the user retains the
job number; if it is not, it is forgotten. ‘

The Monitor maintains a table, JOBTEL, which indicates the status
o< each job. It has a l-word entry for each possible jqb. If the
job 1s unassigned, this word is zeroed. While the job:is defined, its
word in JOBTBL contains a pointer to the complete status information
for this job. The Monitor also maintains a table of in-core jobs.
This table is calléd CORTBL. It is made up of a l-word entry for
each available user core. Each entry contains the job number (and
some other status bits) of the job which occupies that particular core.
Finally, there is a single register, JOB, which indicates which job is
being run at a given moment. JOB is updated at the end of a job time
slice, CORTBL is updated with each swap, JOBTBL is updated on log-in
and log-out.

7.3 TALKING TO THE USER PROGRAM

The preceding discussion is limited to compute-bound jobs, those-
that do neither input nor output. This situation is rare. Most user
jobs do a great deal of console 1/0. For the Monitor to process this
console I/0, it must solve a number of immediate problehs“ Pirst,
it must be able to handle multiple consoles. All EduSystem 50 con-
figurations have multi-terminal hardware, allowing the sysiem to input
characters from any given console and outptt them to any console.
However, it must alsoc determine which conscle is which, and which
characters ar~ received from whiéh console. User programs on EduSystem
50 are reqular PDP-8 programs; as such they ;nput characters from_tha
console and output them to the console. Thare is no ambiguiiy in a
stand-alone system that has only one consoie‘ In EduSystem'SO, vwhere
many jobs are outputting to the console, the potential for confusion

is considerable. Thg EduSystem 50 Monitor must maintain a table
listing which consolé is used by what jobs. Thus, when a job does

console 1/0, Monitor knows the individual console involved.

These are the immediate problems the Monitor must solve. However,
to be usefal, it must also be efficient. Normally, a PDP-8 program
doing I/0 spends virtually all its time“Qaiting for the device; it is
the monitor's responsibility to recover this time and use it to run
another joo. Finally, the Mbnitor should smooth the I/0. EduSystem 50
is a swapping system; user programs are in core only for short periods,
then they are swapped out to the disk. If a user program could only
output when it is in core, its typeout would be sporadic. Input would
he worse. If,a useriprogram could only input when the job happened
ro be in core, no input would be done.

This probiem of émodthing I/0 is solved by maintaining buffers
within the Monitor. There is a terminal input buffer and an cutput
ruffer for eacﬁ job in the Monitor. On input, as characters are
received from the console, they are put into the console input buffer
s5r the jod associated with that console. Thus, the program to
receive these characters need not be in core. The same is true of
output. Claracters taken from a job's console output buffer are sent

to the user's terminal whether or not the associated job is in core.

This console character handler may be thought of as the asynchro-
nous part (asynchronous in the sense that it happens independently
of the running of individual user programs). Each user's input and
cutput buffers are being filled and emptied (by Monitor) whether or
not the user's program is in core. It is essentially an overhead
function. A little processor time is taken from whatever program is
currently running and used to keep up the I/O for all active users.

This interrupt driven terminal handler sclves the problem of
chuttling characters between console and buffers. There remains the
problem of passing characters between these buffers and actual user
programs. This character passing occurs via the EduSystem 50 hardware
trapping capability. On input, the key instruction is KRB, the
keyboard-read IOT. A user program, when it inputs a character,
executes this KRB. The hardware modification causes a trap to Monitor,
preventing hardware execution of the instruction. On identifying the
;:apped ICT as a KRB, the Monitor gets a character from the input

buffer which corresponds to this job, puts it in the accumulator, and
returns to the user program at the instruction following the KRB.

The user program never knows that the KRB was simulated. It acts
»ractlv s iv does on a stand-alone PDP-8. The same procedure applies
to output. Execution of a TLS is prevented by the hardware; a trap to
Monitor occurs instead. Once it has identified the trapped IOT as a
TLS, Monitor takes whatever is in the a;cumulator at the time of the
trap and places it in the appropriate output buffer. Once again, the.
IOT has been precisely simulated. (The asvnchronous terminal routine
assures that the characters placed in the output buffer are typed

eventually.)

However, the ability to simulate KRB end TLS is only half the
job. There remain ail the timing and synchronization problems which
are normally solved by the skip IOTs: KSF and TSF. In a stand-alone
PDP-8, KSF means "Is there a character in the input buffer?" 1In TSS/8,
the l-character hardware keyboard buffer is effectively replaced by a
multicharacter software input buffer. Thus, in EduSystem 50, KSF means
"Are there any characters in the input buffer?" KSF, being an IOT,
traps from a user program. The Monitor, upon identifying the trapped
ICT as a KSF, checks that user's input buffer. 1If there are any charac-
ters in it, the Monitor simulates a skip by returning to the instruc-
t.on [~ the user program which is two locations beyond the KSF.

R «

This arrangement allows for efficient user program I/0. It
allows many characters to be paéﬁed quickly, between a user program
and the Monitor. In a stand-alone system, it is impossible to input
characters at more than 10 cps, the terminal speed. Under TSS/8,
many KRBs or TLSs may be executed in a hundred milliseconds., For
example, consider the following sequence of cogde: . o

LOOP, TAD 1 AX " JAUTOINDEX = o
SNA ‘ : . ' '
HLT
TLS
CLA
JMP LooOP

Each TLS puts a character in the output buffer (assuming i; is
not full). In this manner, a whole series of characters may‘be‘output
in a few milliseconds. (By_outpmt;‘we mean moved to the output buffer.

7-10

1z may be many seconds before the asynchronous terminal handlers type
them all. This is, however, of no concern to the user program.)

similarly, if there are many characters waiting in the input buffer,
. 1aay could all be picked up at the same time by a KRB loop in a user

program.

. If the timing of‘thqse functions can be manipulated favorably,
rne system car. handle input and output efficiently. The obiject is to
'neparate.the character I/0 from the waiting I/0. Rather than wait 1/10

of a second between each character, output 80 or 90 characters at
once, then wait 8 or 9 seconds. .By bundling the I/O wait times into
gsable amounts, like 8 or 9 seconds, the Monitor can use them to run
pother jobs. This timing is handled by the scheduler and device
nandlers. It is important that the user never hang in a KSF; JMP .-1
. iscp as on a stand-alone system. This is the code normally used to
‘yazt until more I/0 can be done. On EduSystem 50, the user job cannot
gg jeft to waste processor time in this loop. Therefore, when the
monitor detects a KSF which is false followed by a JMP.-1 (i.e., the
program must wait for the device), it stops the program just as if the
time slice had been completely used. The state of the program is
gaved. However, the program is stopped in a special way. It is
aarked as not runnable and the reason why it is not runnable (waiting
for inght) is remembered. Since it is not runnable, it is dropped
4rcm the run queue and, when the scheduler finds it the next time, it
will not be run. However, the Monitor continues to keep track of the
gtate of the I/0. At the time when the device is again available,
¢he Monitor changes the state of the job back to runnable. Now the
naxt time the scheduler looks at this job it will run. The job will
. pe started where it had stopped (at the skip instruction) but this
time the skip is true, allowing the program to continue. Thus, by
trapping the s«ip IOT, the Monitor has salvaged the wait time from a

+ob and used it to run other jobs.

In order —-o make running user programs even more efficient, the
Monitor exercises control over the keyboard and teleprinter flags.
these flags are part of the status information for each user. The
obiect is to turn on the flag, thus starting the user program only
4nen it is possible to process many characters. This is done on
input by setting up a "break mask.” This break mask tells the
vonitor what characters are important delimiters. For example, BASIC

considers carriage return and rubout to be delimiters. When BASIC is

ready for keyboard input, it executes a KSF to see if there is any.
Typically, there is none. (The user has not yet begun to type in the
next line in his program.) Therefore, this user program is put in the
© 'O wa:v state and is marked as not runnable. It stays in this state
antil & delimiter appears. The keyboard flag is then set, the program
1s returned to the runnable state, scheduled, and run. As soon as the
program starts, it executes KRBs to read inout characters. BASIC

can thus process a whole line of input in a single, 200-millisecond
time slice. Since this line prokably took sevéral seconds to input,
this user is actually using very little system time. The same situation
applies to output. As the program outputs characters, these charac-
ters are placed in the output buffer. As lcng as the buffer is not
filled, the program is allowed to run. However, when the buffer fills;b
the program's teleprinter flag is cleared, thus suspending execution
of the program (it moves intc I/O wait). As characters from this
buffer are subsequently typed, ending the buffer-full condition, the
teleprinter flag is held down and the user program is kept in the non-
runnable state until the buffer is almost emptied. At this point, the
program is restarted so that it can put more characters into the
output buffer, keeping a continuous output. Programs like BASIC can
fill a character output buffer in one time slice. Therefore, input,
like output, is accomplished without substantial processor time.

It is the combination of the two pérts of the 1/0 handlers:

those driven by IOT traps and operated synchronously with respect to
the user program, and those driven by device interrupts and~operated
asynchronously with respect to user programs, which accomplish I/0.
The commor. communication areas for these two routines are the console
input-output buffers, and their associated flags. The problem of
efficient scheduling is solved by prudent manipulation of these flags.
This is done on input by means of tha delimiter, or break mask.” On
output, it is done by detecting buffer-full and buffer-almost-empty

conditions.
The above discussion is somewhat simplified. Actually,'programs

need not use the skip-on-flag instructions at all and may use string
1/0 instructions to transfer many characters at once.) i

L7-12

~ CHAPTER 8
MONITOR: A MORE DETAILED LOOK

thus far, we have reviewed some of the operations of the EduSystem
53 Monitor &nd how it responds to various simplified situations. This
chapter discusses these operations in greater detail: the various
subsystems within the Monitor, the full scheduling algorithm, and the

data base.

g.1 MOYITOR AS INTERRUPT HANDLER

The fundaméntal task of the time-sharing system is to run user
programs. Time spent running the Monitor is nonproductive overhead.
cherefore, the Monitor must restrict its activities to the minimum
time necessary to keep user jobs flowing smoothly. In order to meet
+his goal of minimal overhead, the EduSystem Monitor is used as an
interrupt processor only. The Monitor is never run except in response
ro an interrupt. The interrupt trap address in field #, location g, is
{ts only entry point. It always exits by dismissing the interrupt.
when it completes the handling of an interrupt, the Monitor dismisses
back to the user job. The job is allowed to run until the next
interrupt; this being the only way in which the Monitor can regain
control once a user job has been started. Since it is better for
the system to be always running a job, the interrupt handling tech-
nique assurss that the system will be doing that as much as pcssible.

Interrupts to the Monitor are divided into three levels: level 0,
level 1, and level 2. The DCP8A clock is the only level 0 interrupt.
»he workings of the clock routines are dependent on the TSS/8
configuration. 1In a PT@8 or KLBE system, there is a line frequency
clock. In a DCPA8, there is just the DCP8 baud clock. This clock
then serves both as the system clock and the signal to enter the
pcg8 service routines. The Monitor does not take action on every
clock interrupt. It waits for 100-millisecond intervals (12 ticks of
a line freguency clock -~ S5 ticks of a DCA8 clock). Thus, when the

clock interrupt occurs, the clock interrupt handler simply increments
a counter to see if 100 milliseconds have‘elapsed. If not, the inter-
rupt is dismissed. (On a DCP8 system, the DCP8 service routines are
run to scan the lines for incoming characters and to continue output.)
Only at 100-millisecond intervals does it involve more Monitor
processing. In this case, it is treated as a level 2 interrupt.

DCP8A level 0 has its own register save‘afea and hence may interrupt
any other process.

The level 1 interrupts are the device interrupts: reader, punch,
disk, DECtape, etc. If the system has PT@8s or KLBEs, the console
terminal interrupts are also level 1. 1In the case of the paper tape
reader and punch, the interrupt processing generally consists of trans-
ferring a character between the device and a Monitor character buffer,
DECtape and disk error flags are also disposed of immediately; the
transfer is retried. In all these cases, the interrupt is dismissed -
immediately.

Since they are all brief, none of the interrupt processors above
reenable the interrupt system before dismissing. Therefore, they have
no problems in protecting themselves against being re-interrupted.
This 1is not the case with any of the other interrupt processors.

These "reenable interrupts” which are considered to be level 2 inter=-
rupts, reenable interrupts before they start processing. The level 2
interrupts may be best characterized as those which take a long time
to process. The level 2 interrupts consist of the ldo—millisécond
clock, service for keyboards, teleprinters, r=ader, punch, or line
printer, operation complete for the card reader, disks, or DECtape, or
a trapped user IOT interrupt. Level § and level 1 interrupt handlers
take up a miniscule amount of code. Therefore, the Monitor may be
thought of as a large level 2 interrupt processor. -

Since level 2 interrupts are serviced with the interrupt re-
enabled, there is the possibility that they themselves may be
re-interrupted. Level g and level 1 interrupts present no p:oblem._
The level 2 interrupt code does its own register saves (AC, PC, LK,
and location 0) to assure that interrupts from the other levels do not
interfere. A second level 2 interrupt, on the other hand, Causes
problems. It makes no sense to suspend the handling of one level 2
interrupt to go off and start on another. Therefore, the Monitor
~hecks €zr. and prevents, this situation. Wherever a level 2 inter-
rupt is detected, the Monitor checks to see whether it is a user mode

g€-2

program whic1h is interfupﬁed.i (The state of the user mode bit is
automatically saved when an interrupt occurs.) If the processor

was interrupted out of the user mode, indicating that a user program
w38 rGLiang at»the time' of the interrupt, then it is permissible to
gcocess che level 2 interrupt. Monitor proceeds to do so. If, on

‘the other hand, the processbf interrupted out of exec mode, this means
the Mbnitor was in ;he process of handling level § or a previous level
2 interrupt (the only conditiéns under which an interrupt out of exec
mode could occur)._ In this case, processing the new level 2 interrupt
is deferred. It is placed on the level 2 queue. Entries in the level
2 queue are addresses of the routines to handle the specific inter-
rupt. Once this is done, the,interrupt is dismissed, back to a
lpcation witnin the‘Mdnitor.‘ At the completion of each level 2
interrupt, the Monitor éheqks this level 2 queue. If it is empty, it
dismisses back to the user program. If it is not empty, the Monitor
»s reeavered to process the next request on the gueue. Only when the
backlog on‘level 2 queue is exhausted does an exit occur from the

Monitor.

In the case of 100-millisecond clock interrupts, the level 2
nandlers save the whole state of the user job in his job status
registers. When this interrupt is finally dismissed, the saved state
of the job, with its job number in core register JOB, is restored. If,
in the meantime, the scheduler has changed the contents of JOB, it is
* ijn fact a new job which is started. Thus, even the system scheduling
is accomplisaed by means of the interrupt handlers.

It is important to keep this concept of the Monitor as interrupt
kandler in mind since the system is incomprehensible when viewed in
any other lijht. All actions by the Monitor may eventually be traced
to some interrupt. Swapping occurs in response to a disk completion
flag. When the disk completicn is detected, the Monitor, via a 2-level
interrupt, lsoks to see what the next swap should be. When the swap
is found, th= Monitor initiates it. Scheduling occurs as a response
to the 100-millisecond clock level 2 interrupt. If it is the second
such interrust since a user job has been started, the Monitor locks for
a new job to run. Even . in the interim level 2 clock interrupts, the
Monitor tries to do some advance scheduling. If there is no swapping,
the Monitor éees if it should begin swapping. Thus, while a job is
running, the scheduler tries to get the next jcb readyv, so that it

may be started immediately after the current job completes its time
slice. When a job does complete its time slice, the scheduler's
task is to set up and start the next job.

Terminal, paper tape, and line printer I/0 are handled by special
level 2 routines. These routines are run every time an interrupt from
one of the devices occurs. In the case of terminal input and the
paper tape reader, characters are stored in a ring buffer at level 1,
and removed and placed into the appropriate user buffer in free core
at level 2. In the case of terminal output, the paper tape punch, and -
the line printer, there i§ a one~word buffer for each device. When‘a '
device interrupts, a character is removed from this one-word buffer
(if there is one there) and immediately transmitted. Later, at level 2, -
a character is removed from the appropriate free-core buffer and placed
into the one-word buffer. Special code allows the line printer to '
£i11 its hardware buffer at level 2 with the interrupt system enabled
and without going through the one-word buffer. ‘

All interaction between the jobs and the systen takes place
throuagh the medium of the IOT traps. The scheduler is heavily
dependent on the state of each job's input and output. Fcr now, we
will just look at the IOT trap handling in general, indicating how o
various classes of IOTs are handled.

Once the Monitor has identified an IQT trap interrupt, it tries
to identify the IOT that caused the interrupt. At ihe time of the
interrupt, the PC, which is stored in location 0, is set at the addresé
following the IOT. This pointer is backed up and the IOT is fetched
from the user's core. This IOT is then tested against a dlspatch
table of 211 valid IOTs If the trapped IOT is found the Monltor -
dispatches to the appropriate routine. If it is no“ found, the IQT o
is undefined. Control is returned to the user prog-am The IOT ig
treated as a NOP.

Some valid trapped instructions do not return <o the user progfam
at all. HLT is the obvious example. HLT means, quite specifically,
do not return control to the program. Control of this job passes to
the system. (How all this operates is du:cussed in the next sectlon)
Some INTs always cause control to be reLurned to the user program ‘ ‘
immediately. Among these are all the IOTs such as TOD, USE, etc.,' J

which have nothing to do with the actual input/output. IOTs, as they
are used by programs running under 1SS/8 do not necessarily mean
instructions used to drive I/0 devices. They are actually instructions
whi~h 21low a job to talk to the outside world, whether it be a
peripneral or just EduSystem 50 Monitor. Those IOTs which communicate
.just with the Mcnitor return to the user program immediately.

The I0Ts which correspond to the actual devices, such as the
terminal IOTs}’may or may not return to the user program immediately.
A true KSF (the keyboard buffer has one or more delimiters in it),
allows control to be returned immediately to the user's program (with
the skip simulated). Similérly, a KRB which successfully gets a
character and a TLS which dces not £ill the output buffer allow
. control to be returned to the user program. In these cases, the user
_program is able to do more useful running. After a true KSF, the
proaram can cdo a KRB to pick up the character. After the KRB, it
can process the character, then look for more input.

8.2 I/O0 WAIT CONDITION

The user program is only allowed to run again after one of these
10T§ if the program is free to do some useful work. In the opposite
cases, where the output buffer is full or the input buffer empty, there
is no expectation that the user program can continue processing. It
is an I/0 wait state if the user program is looking for input which is
not there (false KSF or unsuccessful KRB) or trying to output where
there is no room. On a stand-alone PDP-8, the program gces into a wait
" Joop until it can do more 1/0. Under EdySystem~50, user programs wnich
must wait for I/0 are not allowed to loop. They are stopped until the
wait condition has ended. (Note that this prohibits programs from
overlapping [/0 and processing within themselves. Time spent in I/0
wait is used to run other jobs rather than the job which is in the
1/0 wait. Note also that the wait condition does not coccur on a
character-by-character basis. All I/0 is done on a buffer-by-buffer
' pasis to allow programs to keep up full I/0 rates, even though they
spend much of their time in I/0 wait states.) All other user job
1/0 is handlsd in a manner analogous to that of the terminal. 1In
all cases, biffers of characters are passed between Monitor and user
programs. The programs enter an I/0 wait until Monitor has éuccessfully

completed the transfer of that buffer.

Scheduling is highly dependent on the state of the 1/0. Therefore,
the IOT trap handlers keep a status register (the "wait mask") to indi-
cate for what I/0 device the user program is waiting. The mask, which
corren;cnds exactly to the user's status register (STR1), has a
dummy bit, the "Job is not waiting" bit that is set when the user
program is not in an I/0 wait. Whenever an IOT trap occurs and the
user program is to be stopped, the bit Eo%responding to the device
for which the program is waiting is set. Thus, if the user program
executes a KRB when its input buffer is empty, the bit in the wait
mask which corresponds to the keyboard flag is set. The user program
is not restarted and control returns to scheduler so that another user
program can be run. Thus, whenever a user program is in an I/0 wait,

a single bit in the wait mask indicates the devic: for which it is
waiting. (Some transfers, such as file reads and writes, always place
the user program into a wait state. Others, like the terminal do so
only when a buffer fills.)

‘tha scheduler uses the wait mask to decide which jobs to run.
First, the scheduler keeps a run bit in the job s:atus register for
each user. A user's run bit is on if there is a program in‘progress.
The run bit is set when the user starts his program. It remains set
until the program is halted. Those users whose run bits are not set
are never scheduled to be run. Among those jobs having run bits set,
only those not in an I/0 wait state are actually scheduled to run.

In deciding what user to schedule next, the scheduler scans the
list of active jobs looking for one with its run bit set. Finding
such a job, it sees if the wait mask ANDed with the job status flags.
is nonzero, if it is, the job is runnable and is-scheduled to be run.

A]

NOTE

If the job is not in I/0 wait, the cummy
bit, the "job is not waiting" bit, is set
to assure that the job will be runnzble.

If the job is in an I/0 wait, the wait mask PNDed with the status
bits is zero. Only one bit in the wait mask is set - the bit cor-
responding to the flag for which the job is waiting. This flag is

zero at the time the wait mask bit is set (otherwise, the job would
not be in an I/0 wait). In this way, jobs which are in an I/0 wait
are prevented from being scheduled.

A job breaks out of an I/0 wait when the flag corresponding
to the bit in the wait mask comes on. For example, assume that a job
is waiting for the keyboard. Eventually, the user types a delimiter
on the keyboard. This causes the delimiter bit to be set. The next
time the scheduler checks this user's status, the wait mask ANDed with
she status bits will be nonzero. The job is then runnable again. 1In
general, flays are cleared by IOT trap-handling routines. Clearing
a flag means a wait condition; at the same time a flag is cleared,
the corresponding bit in the wait rask is set. Flags are generally
set as a result‘df level 1 interrupts; i.e., those that do the data
transfers. ‘They are detected by the level 2 scheduler when it looks

for th:z nexc runnable job.

This mode of operation characterizes the whole Monitor. The
ponitor is made up of a number of asynchronous elements which com-
runicate via status registers and request queues. The Scheduler, which
is the heart of the Monitor, is guaranteed to be run every 100 milli-
seconds. Therefore, it is not necessary for another routine, such as
the disk handlers, to jump directly to the scheduler in order to indi-
cate that a swap is complete. To indicate the new system status, the
disk routines need only set the appropriate status bits. The next
time the scheduler is run, it finds this updated status and acts
‘accordingly. Similarly, if the scheduler decides that a swap 1s needed,
it may simply queue this request if the disk is active. When the
completion flag for the present transfer is processed, the disk quene
is checked and the queued transfer initiated. However, if there is no
disk transfe: in progress when the scheduler decides to do a swap, it
cannot just queue the request. In this case, the scheduler itself
must initiate the transfer.

8.3 OTHER PARTS OF MONITOR

The Monitor code which performs the functions discussed so far is
cermanently cesident in field zero while EduSystem 50 is operating.
;ield zero contains almost all the resident code. The Monitor also
occupies field one. About 1K of field one is used for ccde, most of
it for device handlers. The remainder is for tables and buffers,
nearly all of the resident Monitor data base 1is in field one.

8-7

In addition, there are two nonresident sections of Monitor code.
They are the System Interpreter (SI) and the file handl:a:r (FIP).
These routines are not frequently used and do not need to be core
resident. FIP is a 4K block of code which resides in tie second 4K
block of the disk (disk locations 10000-17777). SI makes up a 4K
block of code which resides at the bottom of the disk (disk locations
0-7777). When needed, these routines are brought into field two for
execution. They do not overlay the resident Monitor; they go into
the first user field. 1In fact, the scheduler sets them up just like
a user program. They run in the place of the user prégram which called
them. For this reason, they are referred to as "Phantons,”
(FIP = File Phantom). They are not, however, identical to user pro-
grams because they are run in exec mode. This means they may read
and write physical disk segments (in the case of FIP) ard get at field
0 and 1 data and subroutines.

8.4 THE MONITOR DATA BASE

Some mention has been made of the tables and buffers used by the
Monitor. Diagrams of the tables and buffers used by the Monitor may
be found in Appendix D. These should be referred to as specif.c
tables are mentioned. A brief discussion of the tables follows.

The Monitor does a great deal of dynamic séorage assignment.
It uses a pool of 8~word blocks known as the free list. At system
startup, the unused area in field 1 is divided into these B-word blocks
and linked together by a list structure.

A location in field 0, called FREE, contains a "pointer" o the
first unused block of free core. A pointer is simply the address of
the first word in the block. The first word of this block contains a
pointer to the next block, etc., to the end. Wwhen a routine needs
some place to store data, it can remove a block from free core,
adjust the list accordingly, use the block, and later return it.

pase [] — o

ORGANIZATION OF FREE CORE

As blocks are removed from and replaced back into free core, a
count is retained of free core size. This is in location FRECNT.
FRECNT always contains the number of unused 8-word free core blocks.

Ncte vhat all free core blocks begin at an address divisible
by 8; that is the last octal digit is a #. If a free-core block ever
seems to start at an address which does not have the last digit O,
the system 28 in trouble.

This free core is used by the Monitor for a variety of purposes.
Terminal buifers are made up of linked blocks of free core; device
and job status information are also stored in the free core. Free
core is also used in a number of instances for temporary scratch

storage.

The device handlers for terminals and the assignable devices
make extensive use of free core. Both are based on a single, fixed-
length table of devices, DEVTBL. DEVTBL contains a l-word entry
for each system device (a console counts as two devices: keyboard
and telepriiter). If the device is unused, the entry is zero. If
the device is active, the entry contains a pointer to a block of free
core known as the Device Data Block (DDB). This block contains the
status information for that device. In addition, there is a buffer
for each device. For most devices, the buffers are dynamically
allocated from free core. As characters are entered from the
keyboard and put in the buffers they are put into 8-word blocks of
free core. As one block fills, another is fetched from free core and
linked to it. As characters are fetched from the buffer and passed
to the user program (via trapped KRBs), blccks at the other end of

the buffer are emptied and returned to free core. Within the DDB

are pointers to the head of the buffer (the "fill pointer" which
indicates where the next character is to be put into the buffer) and
tle tail cof the buffer (the "empty pointer®”, which indicates the next
character to be pulled out of the buffer). Input buffers and output
buffers work in the same way.

Thus, console input and output operate independently from the
rest of the system. As characters are entered, they are put into
input buffers (up to about 98 characters). If the character is one
designated as a delimiter, the user's keyboard status bit is set. As
characters appear in the output buffer, they are typed. Buffers -
expand and shrink to meet the needs of the moment. This is the limit
of the responsibility of the terminal handler. The terminal handler

merely passes characters and adjusts the appropriate flags.

Just as each active console is marked in DEVTBL, each active job
is marked with a job status table, JOBTBL, which is a fixed table with
a l-word entry for each possible system job. Non-existeni jobs are
marked by zero entries. Existing jobs have an entry which is a
pointer to an assigned free-core block which is its first job status
block. Each job actually has several blocks of status information
linked together; these status blocks contain all information about
this job's running state. If there are open filesg, blocks exist .

which contain their status.

Finally, there are tables the Monitor keeps which. indicate the
status of the system. CORTBL, which indicates where jobs are in user
cores, is the most important of these. o o .

CHAPTER 9

SYSTEM STORAGE AND COMMUNICATION

.1 TALKING TO THE USER

Until now, we have assumed that jobs running in the system
+ither did no 1/0 or syimply' did console I/0. In doing this console
i characters were passed in a manner analogous to a stand-alone
;-2-8. NoO mention was made of how the program was started in the
:-,:tst place, much less how it was loaded and otherwise controlled.
¢-:se are functions which, on a stand-alone machine, are not per-
;.rmed through the terminal at all -- they are done through the
. sitches on the console. When talking to EduSystem 50, however,
F;,a-:re is only one physical device, the user's terminal, through
+ich to perrorm these two kinds of communication: communicating
. s1th EduSystem 50 and Communicating with a user program running as

- a job within that system.

EduSystem 50 makes a careful distinction between these two
redes. A user is always uniquely in one mode or the other, dependil
on the state of his job. Whenever a user starts executing a progra:
»ig console is,bput in program communication mode. It stays in that
~3de until the program is interrupted or terminated. If the progra
s terminated, the console automatically returns to system communi-
-ation mode. It is also possible to make cne-shot inputs to the

system without halting the user program.

In order to minimize confusion, EduSys;tem 50 has some conven-
zidns to distinguish between system and user mode. The system alwe
sypes a perioc at the margin to indicate that a terminal is in syst
~cde and that the system is ready to accept a new command. The
c-RL/B character tells the system that regardless of the mode of ti
serminal, the characters following the CTRL/B are to be treated as
snough the terminal were in system mode. Thus, even if the termin.
ig in user program mode, all characters fcllowing a CTRL/B up to t

~ext carriage return, are input to the system.

When the user walks up to an EduSystem 50 console, he finds it in
system mode. If the user types a carriage return, thereby.entering a
null command, EduSystem 50 responds with a period at the margin. The
nser ~an then type a command to the system. At this point, tte ter-
winal .5 actually in a special system mode -- it is logged out. This
means

a) Input is not echoed to the terminal, and

b) Only selected commands, such as LOGIN, TIME, and VEFSION,
are considered valid.

To the system all other commands are illegal. Thus, the first
thing a user does is type a LOGIN command, which consists of the
command LOGIN followed by an account number and a password. I1f the
account number and a password are valid, the user is logged in. The
terminal remains in the system mode, but input is now duplexed and
all system commands are now valid. (If the login is invalid, the
user must try again.) » .

The user remains in the system mode then types a ccmmand which
causes a program to be started. This is done by means of'the START
command which takes an octal address as an argument. (2 program
can also be started with an R or RUN command.) The STAFT command .
starts the program and puts the terminal in user program mode.

Cnce a program has been started, there are two ways to stop it,
thereby returning the console to system communication mode. One
way is for the program to execute a HLT. The other way is to type
an § (for STOP) command to the system. However, since the terminal
is in user program mode, it is necessary to preface this S by a CTRL/B
in order to get the attention of the system, Notice that by typing
CTRL/B while a program is running, many commands may be entered to the
system. Only S, .however, will send the terminal back to system mode.
With the other commands, the program continues to run and hence the
terminal returns to user program mode. C

So far only three Monitor commands have been discussed: START,
STOP, and LOGIN. There are, however, many more. ({They are described
in Appendix B.) I

The set of commands enumerated in Appendix B is designed <o give
the user convenient and comprehensive control over programs. The user
can do debugging tasks with commands such as EXAMINE and DEPOSIT;

store and retrieve programs with commands such as SAVE, LOAD, and
gUN; and control additional peripherals with commands such as
ASSIGN and RELEASE, etc.

ihe handling of all these system commands is accomplished by
means of a nonresident system phantom called the System Interpreter.
§I's task is to scan and interpret system input strings and either
execute them directly or reduce them to a concise ccded form to be
'eiécuted by another part of the EduSystem 50 Monitor. SI is called
by the terminal handlers (part of resident Monitor) whenever a system
command (of:en referred to in the documentation as an SI string) is

input.

Characters being input to the System Interpretzr are handled by
the terminal input routines exactly the same way as characters being
- input to a user program. In either case they are placed in the
Multicharacter terminal input buffer until a delimiter is detected.
(Delimiters for SI strings are CR, LF, vertical tak, form feed, and
~rubout if the buffer is empty.) It is only when tre delimiter is seen
that the two types of input strings are treated differently. 1In the
one case, the characters are passed to the user program; in the other

they are passed to SI.

A bit in the input Device Data Block, the "roate characters to
SI1"” bit, is used to remember that an input string is actually an SI
string. This bit is always set when the terminal is in SI mode.
It is also set whenever a CTRL/B is input. A comrand to start running

' a user program clears the bit.

If the "route characters to SI" bit is set, input characters are

- checked agzinst the System Interpreter delimiter mask {carriage return,
VT, FF line feed, and rubout). If the input character is a delimiter,
a second DDB bit, the "SI command delimited" bit, is set. Also, a

scheduler reqister, COMCNT, is incremented.

COMCNT, at any given instant, reflects the number of users who
have typed in a whole command to the system and are waiting for a
response. The scheduler checks COMCNT every time it runs. As long as
COMCNT is zero, everything is up to date. However, if CCMCNT >§, this
means that someone has an SI string waiting. In this case, the Systam
Interpreter is scheduled to be swapped in and run. It is brought intc
field two and started up just as any other user pdrogram. The principal

difference is that SI, being a system phantom, is run in exec mode.
This means it can execute IOTs without trapping back to field zero.
Specifically, it may do a CDF into the Monitor core in orcler to inspect
DOBs. Wien it finds an "SI command delimited" bit set, S knows what
called ic. '

Once it has found what called it, SI reads the command string to
find the basic command. SI has a dispatch table for all valid
commands. For cormands which take arguments, the string is scanned
to pick them up. If an error is detected anywhere along the line, SI
exits back to the Monitor after typing an error message back to ihe
user. If the command is valid, SI must decide what to do with ii:.

SI is capable of executing many commands on its own. For the rest,
it calls for help. For all file operations, it must call still
another nonresident subsystem, the File Phantom. For thes: commands,
5I reduce= the input String to a concise command code whica is then
passed on to the appropriate portion of the Monitor.

SI itself is essentially reentrant. It gets its inpuz, the
command string, from the Monitor core. SI operates on it, and puts
any output, either a response string to the teleprinter or a concise
command to be executed by some other part of the system, back into
Monitor core. SI may be thought of as the English language interface
between the user and the system. It allows the user to enter
commands in a simple format. These input strings are translated by
SI into a form that the rest of the system can understand. It resides
on the disk and is called in to perform this interpretation and
translation function whenever a user requires it.

9.2 DISK STCRAGE AND FILES

Up to now, the EduSystem 50 disk has been mentioned orly as a
swapping device. For each job, there is a dedicated 4K area on the
disk in which the job is stored when it is swapped out. This is not,
however, the only way in which the disk is used. The low-order tracks
of the first disk are used to hold an image of -the system. @-7777 con-
tains the System Interpreter Phantom. 1g@gg@-17777 contains the File
“hantcm, part of which is tables and part of which is code. The entire
4K of FIP is brought in whenever it is called. If FIP updates any of
its tables, these are written back out to their place within the disk
image. SI, which contains no internal tables, is never written back
after it is called. The next 4K of the disk contains an image of the

system initializer. It is brought in only at system startup time, it
is not usel while the system is up. It is kept on the disk to allow
for easy system restarts. The next 8K is used to hold an image of
the ¢ idznt Monito:.v It is brought into fields zero and one by

the initializer at system startup time. It is not accessed by the
running system. Like thé image of INIT, it is kept on the disk to
allow rapid recovery from crashes.

The area:of the disk immediatély above the system image is used
for the swap areas. There is 4K for each possible system job. (A
16 user sysﬁem thus uses 64K of the disk for swap tracks. This, plus
the 2AK cf system image, totals 84K of disk which is taken for
system usage,)

All remaining space on the disk is devoted to on-line file
storage. If the syséemvhas more than one disk, the additional
surfaces are completely devoted to file storage. The file area is
allocated in 256-word segments.

EduSvstem 50 provides users and user prograrms with the capability
of setting up files in this area of the disk and of reading and writing
them. These files may be of arbitrary size; they are, however,
made up of an integral number of disk segments. Creating a file
‘reserves a segment aof file épace on the disk and associates with it
the symbolic name specified in the create commancdl. The user may oren
this file, thereby allowing it to be manipulated. He may extend the
file a given number of segments, thereby reserving more segments of
the disk for the file. Extending a file puts the new segments on the
"end" of the already allocated segments. Reducing a file returns one
or more segments from those reserved for this file to the pool of
available segments. The user may also rename a file. These four
basic functions of creating, extending, renaming and reducing (deleting
is accomplished by reducing a file until there is nothing left) have
nothing to do with the contents of the file. They merely define and
reserve a certain amount of space on the disk,

As far as the user is concerned, these segments are contiguous.
He addresses, and therefore manipulates, the file as though it were
one big long disk area. The actual size of the file, as determined
by creates, extends, and reduces, is important only in that a user
cannot write off the end of the file.

s

The file itself is considered to be made up of 12-bit data words.
There are no control words in the file; all the space within a file
which a user has defined is available for program storsge. The user
addresT2s a file by internal file number and an address withir. that
file. The first word of the file has address zero. Using this file
address, the user may transfer data between a selected part of the 4K
core and the addressed point in the file. Althdugh only 4K mey be
transferred between core and a file in one transfer, the size of files
& by no means limited +o 4K; 1B bits gre allorate’d for disgk Fils

PRI PURE L A HS b <L b RTIITT D DI I TR R LD T I e T IO

vetween typas of {iles. ALl files arae made up of 1Z-bit data words.
Whether these 12-bit words contain single ASCII characters {or, indeed,
characters of any other code), pairs of trimmed characters, numbers,
or whatever, is immaterial to the system. How the data cof a given
file is interpreted by a program is, of course, what matters. ‘

That segments of a file appear to the user to be contiguous is
an illusion. Disk segments are, in fact, allocated at random. Edu-
System 50 maintains directories in order to remember the segment:s
allocated to certain files. As mentioned above, the actual seginents
which make up a disk file are pure data area. Segments cf a file are
not chained together; there are no header words attached to a sagment.

For each user, EduSystem 50 maintains a User File Directory (UFD)
that holds the names of all files a given user is maintaining and the
disk segments of which it is comprised. ’ :

NOTE

The diagrams at the end of this manual
will help in understanding the EduSystem
50 file structure.

The UFD is divided into B-word entries. For each file there is
a single filename entry. The first three words contain)the fi]ename
(6 characters packed in EduSystem 50 internal format).

Words 4-6 contain information about this file. Word 3 contains
a pointer to the next name block in this user's UFD. This pointer is
ssed to chain through the UFD name blocks. The final word of the -
name block (Word 7) contains a pointer to a File Retrieval Information

Block. Each name block has associated with it one or more of these
retrieval blocks. They are also 8-word blocks and are interspersed
with the name blocks in the UFD file (hence the need to chain the

name l.ocks;. The first word of the retrieval block is a pointer to
the next retrieval block for this file (or zero if this is the final
block). The next seven words contain a list of segment numbers of the
segments which comprise the file. The file is considered to run from
the first segment in the file to the last. (A zero segment number
terminates the list.) The algorithm for asscc:ating addresses within
a file (the means by which a user addresses hic file) and physical disk
addresses (the system's ways of addressing) is straightforward. The
file address is divided by the segment size. The juotient is the
logical file segment number. Counting down the file retrieval block's
list of sement numbers to this number yields “he physical seament
number. (If the list runs out too soon, the user has run off the end
of his fila.)

In the actuai implementation, the UFDs are files. They are mad«
up of disk segments just like anv other file. (The B8-~word blocks
into which the UFDs are divided are merely a s»>ftware division.) In
order to keep track of these UFD files, there .s ctill another
directory, the Master File Directory. 1In format, it is virtually
identical to a UFD. It is broken down into 8-worc name and retrieval
informaticn blocks. The 3~-word names in the name block are, however,
login IDs rather than filenames. The first word contains the account
number as a 12-bit binary number, the next two words contain the
j-character password, packed in internal code. Taken altogether,
these three words constitute the "name” of the UFD. (The MFD is, of
course, also used at login to see if the accouat number and password
are valid.) The file retrieval information bliock linked to the name
block (in the case of the MFD, only one retric¢val block per UFD 1w
allowed) contains the numbers of the segments which make up the UFD

for the user.

To complete the symmetry, the MFD is in turn a disk file made up
of segmen‘:s., It, however, always starts with segment 1.

The MFD and UFDs take care of the problen of allocated disk
segments. There is one further table, the Stcrage Allccation Table
{SAT), which keeps track of unallocated segme:.ts. SAT is a bit takle
which is set up when the system is initialize:!. It contains a bit
for each segment . . . the bit is cleared if the correspornding segren®

1s available, it is set if that segment is allocated. AlL requests

for disk segments get the segments from the SAT table rou:ines. Simi-
larly, no longer needed segments are returned to the SAT. For example,
1f a fle is to be extended a segment, the SAT routines are called.
They r.turn with the number of an available segment, whica is added to
the list of segments in the retrieval blocks for that fils. Files are
reduced by deleting the last segment number or numbers from the list
and clearing the corresponding bit(s) in the SAT table. .

9.3 TALKING TO THE DISK: THE FILE PHANTOM

Most of the tasks described in Section 9.2 are accomplished by
a second nonresident section of Monitor, the File Phantom (FIP), FIP
handles all disk manipulations except actual reads and writes. Like
the System Interpreter, it resides on the disk. It is called ty the
Monitor to perform functions which cannot be handled by resident
routines. All tables relating to the disk files are kept within the
4K which FIP occupies. They are swapped in with FIP whenever it is
called. Whenever they are updated, the tables are immediately
written back to the disk by FIP. In this way, the disk always
contains all information about itself. The disk is thus protected

against loss in most system crashes.

FIP's primary task is to do the file handling. It maintains the
UFDs, the MFD, and the SAT, performs all the needed searches of
these tables, and executes the basic file commands of CREATE, EXTEND,
REDUCE, and RENAME as discussed above. These all happen independently
of the resident Monitor; they result in changing the status of the
disk only. PROTECT is similar; it allows the protection code on a
file to be altered, but nothing more. OPEN and CLOSE, however, are

somewhat different in nature.

OPEN and CLOSE do not alter the disk in any way, they simply
establish a link between the resident Monitor and a disk file. (It~
is important that OPEN and CLOSE do not affect the disk. Newly-
created files exist even if they have not yet been closzedl out.) Each .
job may have up to four files open simultanecusly. Ther: are four
registers in the last job status block which record the'staﬁus of these
four internal files. 1If there is no file open on an intarnal file '
number, its corresponding job status block word is zero. (See diagrams:
of job status blocks, Figure D-8.) When a file OPEN comnand is given,
TTD zet3 up a aew file control block in free core. This block is ‘

9-8

used to hold pertinent information about the open file. A pointer to
this file cortrol block which remains set up as long as the file is
open, is placed in the job status block register for this internal
file. At the same time, FIP gsets up a second block in free core for
this file., %This block, the file window, contains one of the file
retrieval information blocks from the UFD. At the time of the OPEN,
- the first file retrieval information block is put in the window. At
. the same time, the fact that this is the first window is recorded in
a register o: the file control block. Once all this is done, the
OPEN is complete. CLOSE merely dismantles all this and zeroes the
register in the last job status block which corresponds to this open
file. Opening a file automatically closes any file which was open
on that internal file at the time.

CREATE is the only file command that does not have to be preceded
by an OPEN. All othér file commands operate on internal file numbers
rather than filenames. In the case of EXTEND, REDUCE, and PROTECT,
this is to allow for file protecticon. The file protection apparatus
is part of tie OPEN routines. Files which are read-protected against
a user canno:t be opened by him. 1If a user is allowed to read but not
write, he is allowed to open a file but a write-protected bit is set
in his file control block in free core. EXTEND and REDUCE are consi-
dered to be the same as writing. They are prohibited if write-protect
is indicated. The PROTECT command, which sets these various modes of
protection, is illegal except for the file owner. Finally, there is
an implied protect on files open to more than one user. If a file to
be opened is already open to another user, it is write-protected to

prevent confusion.

RFILE and WFILE, the file read and write commands, require the
file to be open, because they need the information in the cmen file
information blocks. RFPILES and WFILES do not, in general, require
FIP to be called. The Resident Monitor attempts to execute them
itself. It takes the file address given as a parameter to the
command and compares it against the state of that file's window. It
_ sees if the segments in the window correspond to the part of the file
involved. 1f so, it executes the transfer. (Note, that if it is a
write, the write-protect bit in the file control block block is
checked first.) If the window is not properly set, the resident
Monitor calls FIP to move the window so‘that it is looking at the
specified part of the file. FIP then returns to the Monitor so that

it can do tte transfer.

9--9

FIP is called whenever the Monitor discovers a request that it
cannot handle. Before calling, it must set up the appropriate
command and parameters so that FIP will know what to do. This command
is always in the form of an IOT; one of the EduSystem 50 I0Ts. 1If
parameters are involved, they are passed in precisely the format that
they are specified for the IOT itself. Thué, CREATE takes three words
of parameters, OPEN 5, etc. C

Whatever the IOT, the IOT and all its parameters are placed in
block of free.tore A pointer to this block is placed in the job status

block register referred to as JOBLNK. FIP is then called. If PIP is
to return parameters, it does so in this same block. As scon as the
block is no longer needed, it is returned to free core. Some IOTs do
not take parameters. The AC is the only parameter. In this case, no
IOT Parameter Block is needed. The IOT gces into JOBLNK. (The AC is,
of course, stored in another job status block.) If JOBLNK is less thany
400, it contains an IOT with the first 4 bits stripped off. If

JOELNY, 18 400 cor greater, it contains the acdress of a free-core block
which c¢onta.ng the IOT. '

FIP maintains the Storage Address Table (SAT) which is located
in the high end of FIPs 4K. Whenever the SAT is changed (a segment is
allocated or deallocated), it is written back to the disk so that the
next time FIP is brought in, an updated version of the SAT will come
in with it. The SAT is the only permanent table that FIP maintains.
It is never changed by a system restart. (Iritializing, of course,
clears the SAT.) All other tables and data areas maintained within
FIP are kept only as long as individual -users are logged in. They
are cleared on a system restart. '

FIP handles all the open-file information lirked into job status’
blocks. These are set up on an OPEN, cleared out on a CLOSE, and
suitably updated whenever a file is changed. FIP also maintains some
internal tables which make its operation more efficient. For example,
when a user logs in, FIP opens that user's UFD. It gets the retrieval
information block from the MFD and stores: it in a table. : By doing
this, FIP does not have to scan the MFD évery time it wants to find a
UFD. FIP also remembers how many users are logged in under this
account number or are using a file belonging to the account.

Finally, FIP does all updating of the directories, the MFD and
UFDs. It has a 256-word buffer into which it can read directory

F=.0

segments. FIP scans directories by reading them in one segment at a
time until the desired entry ias found. 1If it is changed, this segment
is then written back out to the disk. If the directory is extended or
reduced, FIP updates the appropriate retrieval information block in
the MFD.

See Appendix D for a more detailed discussicn of the FIP tables.

9.4 DISK TRANSFERS

All disk transfers, whether they are swaps, user program I/0O
requests, or FIP table or directory transfers, are handled by a common
disk routine. Most disk transfers go between user fields; resident
Monitor never does transfers into field @, and only the DECtape handler
requests traisfers in field 1. The common disk routine takes a
standard set of parameters which are stored in a block of free core.
They are: direction of the transfer, the field involved, the disk
address (physical), the core address, the number of words to be
transferred, and the address of the routine to go to when the transfer
has been completed. The disk routine gets up the transfer, does it
and then dispatches. If it tries three times and fails, it dispatches
to an error handler instead.

Since requests to do disk transfers c¢an pile up, there needs to
be some place to queue them.. In the case of swaps, there is a single
register SWREQ. 1If it is zero, no swap is pending. If it is nonzero,
it points tc a parameter block for the next swap, in or out. Swaps
get first priority. When the current transfer is done, this swap
will be done next.

All other transfer requests are held in DSUTBL (often referred
to as the disk queue). DSUTBL has a 4-word entry for each core field.
A nonzero ertry indicates that a transfer is pending for that core
field. (The entry points to the parameter block.) Within the 4-word
entry, each word corresponds to an open file. Thus, if the job in
field 3 wishes to read open file 2, it executes an RFILE. The
resident Monitor uses the retrieval window for that file (calling FIP
to move it, if necessary) to figure out the physical disk address. It
tﬁen builds a parameter block in free core, and puts a pointer to it
in the third word of the DSUTBL entry for field 3. The program is
then put into the wait state until the transfer is complete. It is,
however, prevented from being swapped while this transfer is taking

9-11

place, This is done by setting the LOCK bit in CORTEL to lock the user
into core. This bit is cleared when the transfer is completed. (Disk
transfers on the system disk- and the RK0S, and card reader t:ransfers,
vhich are not buffered in Monitor core, require that the program

remain in core.) Even FIP, when doing directory transfers in and out

of its own area, or writing out its internal tables, -1ses the DSUTBL
for queueing requests.

9.5 ASSIGNABLE DEVICES

All EduSystem 50 systems include a high-speed paper tape reader.
Some may include optional devices, such as a high-speed punch and
DECtape. These devices comprise the assignable devices for the sys-
tem. They may be used exclusively by individual on-line users.

Assignable device handling breaks down into three sections:
assigning and releasing the devices, a device handler, and code to
pass cdata between the Monitor buffers and the user program. Assignable
devices have their slots in DEVTBL just as the terminals do. If the
device is not assigned, the corresponding register in DEVTBL contains
zero. When a user requests a device (and it is available) a Device
Data Block is set up and linked into DEVTBL. Within th2 DDB is
stored the number of the job which now owns the device. Whenaver a
refereﬁce is made to this device, the referencing job is checxed
against the job number to assure that it is the right one. No error
checking is done at assignment time. Thus, all eight DECtapes could
be assigned even though only two transports exist. When a user
releases the device again, the DDB is freed and a zero is returned to
the DEVTBL entry. Also, the amount of time that the device was
assigned is adc¢ed to the user's device time. In this way, use of
assignable devices is reflected in the accounting information.

Different assignable devices use different methods of buffering
tuneir I/0. For example, the paper tape reader, which uses a free-
core buffer, is activated by a RRB IOT. Finding the buffer empty, the
Monitor puts the user job into an I/O wait state. This clears its
reader flag and sets the corresponding bit in the wait mask. It then
sets up the reader service routine to read characters int> the reader ~
buffer. When the buffer has been nearly filled, the user's reader
flag is reset, making the program runnable -again. The program then

executes successive RRB IOTs to pick up individual characters. When
the buffer empties again, the process repeats.
the buffer by executing an RCB instruction.

The user may clear

¢peration of the high-speed punch is very similar. The running
program passes characters to the Monitor, via trapped PLS instructions.
These go into the punch buffer. If the buffer fills, the job goes

" into the wait state until it is emptied again. One difference is thar

punching is begun whenever any characrers are in ths wusgy.d 1 i ttey
The ¥onitor does nct wait for the pulfer b, 1

(A2 . 4 X, & Lets

TIET DAY UVEIIZD AXATUTILM wivi STl G AR Aisy, X o s s

e EE T -, P y) 3)

o2 Dlio. TH€ Linw Sripcar is raidied in & marner SiM.iAr kK5 rha nivgn
speed punch.

DECtape handl:ng is different.

. DDBs are set up when they are
. assigned and returned when released.

Since there arze 21ight cssible
tZlhapes, the Moni:or reserves eight words in NEVIRL.

FTom wotta LB
ere used for reads and writes.

8ince the DECtape controllar alliim
access to only one transport at a tima, there in no per

- a Monitor buffer f£or mach onm. In fant, $hers in g e, b n
of the number of units. At the time A usage

nt bn having

[/”l’jl L T10) ,q,zz,r"uuu ~
transfer, the Monitor starts the desired transport toward the

requested block, and the job is put into a wait state. When the block
. is almost at hand. the Monitor assigns the DECtape buffer to that

job, stopping the tape to wait for the buffer if necessary. On a read,

the selected block is now read into the buffer, and transferred to
_.the user, either ky transferring to his core field or by writing it to
1 his swap track on the disk. Conversely, on a write, the klock is

moved from the user's core or from his swap track to the CECtape

puffer, and then written to the tape.

The RK0O5 and card reader are similar in that they both lock the
. yser into core and transfer directly to/from his buffer.

Although these are the only peripheral devices supported by the
pduSystem 50 Monitor, they provide a good model for users who may wish to
incorporate their own special devices. In all cases, three software
nodules are involved: one to handle device assignment, one to handle
data transfers between the user program and the Monitor, and one to do
the actual device handling. Space in the Monitor is available but
not in large quantities.

9.6 ERROR HANDLING

The EduSystem 50 Monitor allows the user program a great deal of
~reedon in the way it utilizes system resources. Therefore, system
error checking is kept to a minimum. A user may have a job do anything
that does not affect another job, or the system as a whcle. Jor exam-
ple, a program may wipe itself out without interference from :he system.

The first level of error handling comes when a user program
requests the Monitor to do something it cannot do, for example, opening
a file that does not exist, or reading from an internal file number for
which no file is open. For all such logical errors, the Monitor
returns an error code to the user program. (FPor more information,
see Appendix B.) Not all of these errors are simple
logic problems. For example, trying to create or extend a file when
the disk is full returns an error. Running the same prcgram some
other .cime would give no error. Another non-~logic error is the parity
error or directory error on a file read or write. This is th2 result »
cf physical malfunction of the disk, a transfer error occurredl either
within the file itself or within one of the Monitor's directories.

The second level of error handling also comes when a user program
requests something which the Monitor cannot do. For exzmple, the user
program requests service from the high-speed reader when somepne else
owns it, or when it is assigned properly, but there is ro tape in it.
Another example is a physical disk error when trying to swap this job in
or out. In these cases, it is impossible for these jobs to continue. ‘
Therefore, the Monitor terminates them, and types out ar. error message
and the state of the active.registers. User programs may, however,
request that they be allowed to handle such problems. They do this
by executing an SEA IOT, which gives the Monitor an address to JMS to
when such an error occurs, This routine is responsible for finding
out what the error was (the error code is in job status word 1 where
it may be fetched by a CKS I0T), and responding to it. The user must
clear the error status via a CLS IOT. ‘

The Monitor also does internal error checking which is not
apparent to the user. All disk transfers are tried three times. Only
after the third try is a disk transfer error actually reported. All
I/0 devices except the system disk have a timer. Each time an I/0
operation is started, the timer is set for a number of seconds,

Jepending upon che Jevice. If an interrupt does not occur before the

timer times out, the Monitor will signal a hung device. 1In the case
of a terminal printer, the output buffer is simply cleared. All other
devices report a system error when hung.

When the punch or line printer hangs, the Monitor reports the
error and attempts to re-report it every five seconds until either
the device is put on line, or the device is released. In the first
case, output continues, and in the second, the buffer is cleared.

If SI is called to report a hung device, it will report it only once.
If SI continuas to be called every 5 seconds, it will simply ring the
terminal bell, trying to get the user to do something.

APPENDIX A

UTILITY PROGRAMS

The following programs are used commonly in EduSystem 50. The
information given here is meant to be only a quick summarv of their
use. For more information, refer to Users Guide.

A.1 BASIC

Type R BASIC to execute BASIC. BASIC asks "NEW OR OLD?."
Arswer CLD to execute a program stored on disk. BASIC asks for the
name of the program. Respond with the name if the program is stored
under your account number. If the program is stored under account 2,
respond with the name immediately followed by an asterisk. Optionally,
follow the name with a space and an account number.

BASIC now responds with "READY." You may now add or change any
lines simply by typing them, list the program by typing LIST, or run
it by typing RUN. To interrupt a running program, type a CTRL/C. T2
return to the Monitor from BASIC, type BYE,

A.2 CAT

A user may type R CAT to run CAT, and obtain a listing of disk
files.

The system manager, logged in under account 1 may type R CAT to
run CAT and obtain a listing of all users, their passwords, amount of
time used, etc. The accumulated time may be reset by answering "YES"
to the question "RESET?",

The system manager may type a R CAT:L to get a disk directory of
any user. CAT asks the account number of the direct:ory it is
requested to list,

Any user may type R CAT:S to obtain a short SYSTAT.

The system manager may type R CAT:R to reset all users' CPU
rime.,

A.3 LOADER

The LOADER loads BIN format files into core from disk. For input,
type the name(s) of the input file(s), separated by commas. For
option, specify D if debugging using ODT is desired. Normally, just
give a carriage return. The LOADER will not correctly load locations

7767 - 1777, I1f ODT is used, locations 4 and 7000 to
7777 must be reserved for it.

A.4 LOGID

The system manager (account 1) may define, change, and 3lelete
accounts and passwords at will. See Section 6.1, defining accounts
and passwords.

A.5 LOGOUT

LOGOUT is run in response to the LOGOUT or KJOB Monitor commands.
See LOGOUT under Monitor commands for additional details.

A.6 PIP: PERIPHERAL INTERCHANGE PROGRAM

PIP moves files between paper tape and disk, deletes disk files,
or prints them on the line printer. PIP has been replaced by PUTR.
However, in case some systems desire to use PIP, here are instructions.

When PIP requests INPUT or OUTPUT, respond with a carriage return

only, to specify a paper tape reader, paper tape punch, or terminal,
Respond with a filename for a file under your account. Respond with '
a filename, space, then account number for a file stored under
someone else's account.

When PIP requests OPTION, choose from the following list:

B - Transfer a BASIC program file between the disk and the .
high~speed reader or punch. The response to INPUT: and
OUTPUT: indicates the direction of the transfer. '

o

D - Delete the file specified for input.
F - List a BASIC program on the line printer.

K - load a save format paper tape from the terminal. The
Monitor must be patched to enable this option to operate
properly, as it normally forces the parity bit on for
terminal input.

L - Transfer an ASCII file from the disk to the line printer.
Punch the contents of a disk file on the high-speed punch.

R - Read a tape from the high-speed reader and store it as
a disk file.

S -~ Transfer a SAVE format file between the disk and the
high-speed reader or punch. The response to INPUT: and
"QUTPUT: indicates the direction of the transfer.

T - Transfer a file between the disk and the terminal reader
or punch. The response to INPUT and CUTPUT indicates
the direction of the transfer.

o]
]

A.7 SYSTAT

SYSTAT may be run to obtain the status of the system by typing
SY or SYSTAT. The SYSTAT may be cutput to the line printer by typing
SY TAT-L.

A.8 PUTR

PUTR is a program designed to transfer information from any
EduSystem 50 device to any other EduSystem 50 device, with numerous
options for different formats. For further details see Users Guide

A.9 PTLOAD

PTLOAD is TSS/8's version of the Binary Loader. To use PTLCAD,
load a binary tape in the appropriate tape reader, and type
"R PTLOAD". To "OPTION-", respond with "T" for the terminal (low-
speed) reader, or "H" or any other letter for the high-speed reader.
When using the low-speed reader, turn it off when the tape reaches
trailer code. Binary tapes may not be read from a terminal without

patching the monitor.

A.10 GRIPE

GRIPE is a program which allows any user to leave a message for
the system operator. To initialize GRIPE, log in under account 3 and
type "R GRIPE". GRIPE should print "THAT'S ALL", and return tac the
Monitor. The initialization is complete.

To use GRIPE, any user types "R GRIPE". GRIPE prints "ENC WITH
ALTMODE"”, and then allows the user to type his message, after which
he should type an ALT MODE (sometimes labelled ESCAPE).

When the operator desires to read the collected messages, he
should log in under account 3 and type "R GRIPE". After the messages

have all been printed, they will be deleted and GRIPE will be ready
to collect more messages.

GRIPE stores gripes in an unprotected file under account I named
" GRIPE" any user who discovers this can read or destroy this file

if he wishes.

A.ll OTHER PROGRAMS INCLUDED IN THE LIBRARY:

CATALOG may be LISTed under BASIC for a list of some BASIC
games and demonstration programs.

PLOT is ‘a FOCAL program to plot a damped sine wave.
HAMURS is a FOCAL game, as is ROCKES

HAMURA and ROCKET are saved images of HAMURS and ROCKES which
are run by simply typing "R HAMURA" or "R ROCKET".

WDGAME is a FORTRAN demonstration. It may be used as follows:
«R FORT
INPUT - WDGAME
OuTPUT -
INPUT - DATA
OUTPUT =~

MATRIX is a FORTRAN demonstration which multiplies 2 square
matrices.

TYPE is a PALD demonstration program. Wwhen assembled, loaded,
and started at 4¢g it prints "g123456789". :

AJJ2 TESD PRGeRNb

The following prograns are written opecifically +o run under
EduSystem 50 and to test various capabilities of the Monitor.
These programs can be used as system confidence tests, or

they may be used by service personnel to exercise peripherals

~without bringing down EduSystem 50.

A.12.1 TSTMEM

This is an EduSystem 50 memory diagnostic. If an error is

detected, the diagnostic prints a message or halts.

Execution:

‘To execute TSTMEM, tjpe "R TSTMEM". The program prints "11"

occasionally to indicate that it is running. Otherwise, the

program runs until an error occurs, or urtil it is stopped.

A.12.2 TS™DT
This is an EduSystem 50 DECtape diagnostic which writes and
reads random data on random blocks in a random directicn with

a random current address. Data and status errors are reported,

and a status report is available.

Execution:
If 2 line printer is available and on 1line, type "R TZ7 7 :Lr",
where n is the number of a DECtape drive which has a

scratch tape mounted on it. The drive should be placed in

remote, write enabled. If a line printer is not available,
type "R TSTDT", and the diagnostic will ask for the desired

unit number.

The diagnostic initially confines itself to the first 200
blocks on the tape. After a short while, it prints a

status report, and then begins exercising the entire tape.

STATUS REPORTS:

Typing any character other than CTRL/C causes a status repdﬂ
to be printed. If the character is an E, the diagnostic wiﬁi
stop after the status report (the operator may type "START"
to continue). The status printed includes the total number i
of blocks read and written, the number of words of data err@{
the number of status errors, and the Inclusive OR of all |
status bits returned by the Monitor. These status bits

correspond to TCO0l/TCO08 status register B.

ERROR REPORTS:

If a status on data error occurs, the printed information’
will include the DECtape ﬁnit number, Stétus A and B‘for tﬁ?f
transfer, the block number of the transfer, and the buffer
address. In addition, if there were data errors,:a tally |
will be printed, followed by the locaticns in error.- Ihe‘f f
first address in the block should be the block number. This
will be at the high end of the core buffer, if the block‘wﬂ

read in reverse. The data is printed as it would appear in

. 1if the block had been zead in the forward direction.
,rever a read error occurs there isg no way aof knowing
7 long ago, or in which direction the block was written.
-+t the user desires to gstop a long error report, he types

,CTRL/C. This halts printing and resumes testing.

.12.3 TSTRK
‘mis is an EduSystem 50 RKO5 diagnostic which writes and
..ads a random number of pages of random data beginning

;z a random core address and a random sector. Data and

;tatus errors are reported.

sxecutions

£ a line printer is available and is on line, type "R TSTRK:Ln",
gmmre n is the anumber of a disk drive which has a scratch pack
-cunted on it. The drive should be iﬁ the ready position, not
srite-protected. If a’line printer is not available, type

g TSTRK" and the diagnostic will ask for the desired drive number.

ﬂm‘diagnostic exercises the disk until it is stopped.
Aﬂﬁr 4096 trarsfers, it prints a "PASS COMPLETE" message.
70 exit from the test, type E, followed by a carriage
return. If there is a long data error, printing can be

stopped and testing can be resumed by typing CTRL/C.

ERROR REPORTS:

If an error occurs, the transfer parameters are printed.
This includes whether the transfer was a read or a write,
the unit number, the number of pages in the transfer,

the RK05 status, the contents of the AC after the DLAG,
the initial sector, and the beginning current address.
The status returned corresponds to the RK05 status registén l
but will be 0 if no error has occurred. The value returned
in the AC, after the DLAG, should be the number of blocksi
successfully transferred. If the transfer is completed
normally, this will be (P+1l)/2, where P is number of pages

transferred.

In addition, if data errors were detected, the information
printed will include the disk sector number where the error -
occurred, the address within this sector (0-377) and the

good and bad data.

A.12.4 TSTPT

This is a test of the high-speed paper tap=z reader and puich
The test punches the special binary countApattern and reads |
either the special binary count pattern, OR A ONES ANDIZER&‘

TEST TAPE.

naocution:

gype "R T3TPUY. The test prints a quick option summary

and waits for a command. If a P is typed, the punch begins
punching. After a sufficient amount of tape has been punched,

type P again to stop the punch.

if an R is tyﬁed,'the reader starts when the test reads the
_first non-zero frame, it deciées which type of tape is in
the reader, and then it continues. If the user wants to
stop the reader, he has to type another R. Typing CTRL/C

. causes the test to halt after releasing the devices.

- ERRORS:

1f the first non-zero frame, on a tape being read, is

not 001 or 377, the test prints a message requesting the
paper tape. If an error is egcountered within the tape, the
expected and read values are printed. Because of the buffer-
"ing by the Monitor, the physical position of the tape will
not be close to the frame in error. If a "HUNG DEVICE"
message is printed, the paper tape punch is probably not
turned on o1 is not responding for some reason. This could
also occur i1f the reader was turned off. If the reader

- hangs (reads to the end of the tape), the message "READER
ASSUMED", may be printed. When a device is hung it is not
always possible for the test to know whether it was the
reader or punch which hung. But if it was wrong, the punch

will hang again in a few seconds.

An "ILLEGAL IOT" message probably means that another job owns
the punch or reader, and it cannot be assigned. The PC does

not necessarily point to the invalid IOT in question.

A.12.5 TSTLPT

This is a test of the ability of EduSystem 50 to output to the
terminal and the line printer. Tgé test will fhandle 72, 80,
or 132 column printers or terminals, 64 or 96 characters, and

four different patterns.

Execution:

Type "R TSTLPT". The test prints a quick opticn summary and
then waits for a command. If a "T" is typed, the terminal
begins printing. If a "T" is typed again, the printing stops.
The same is true of "L", and other commands may take some time

to take effect.

Typing a 0, 1, 2, or 3 causes the pattern on the line printer
or terminal to change. If "T" was typed more recently than "L
the terminal pattern will be affected, and conVersely, if "LY
was typed more recently than "T", the line prirter pattern .

will be affected.
Typing a 9 causes the line printer or the terminal to use 96

characters. Typing a 6 restores the normal case of 64 charactel |

This affects "L" or "T" as above.

A-10

7yning a 7 causes the line printer or terminal to use 72
columnsg; 8 causes the line printer or terminal to use 80
columns; W (for Wide) causes the line printer or terminal
~ to use 132 columns. .Again, this affects either "L" or "T"

as expiained above.

Typing CTRL/C causes the diagnostic to halt and the line printer

to be released.

 Errors:
":The diagnostic itself detects no errors. Printed output should
 pevisually inspected. 1If the line printer is not on line or

does not respond, the monitor prints a "HUNG DEVICE" message.

A.12.6 TSTBAS
This is a test of the ability of EduSystem 50 BASIC to interact

with a user.

Execution:

Type the underlined parts >f the following dialogue:

.R_BASIC

Ni:ZW OR OLD--QLD
0.D PROGRAM NAME--TSTBAS*

READY

RUN_

At this times, there is a pause for compilation. Then instruc-
tions for use of the program are printed. To terminats the

test, do the follewing:
*C

HREADY

BYE
1BS

aA-11

A.12.7 TSTFOC
This is an EduSystem 50 FOCAL program which plots a damped

sine wave on the terminal, testing terminal output.

Execution:

To execute TSTFOC, type "R TSTFOC". Thé program prints an
asterisk (*). Type G, followed by a carriage return,

and the plotting should start. TSTFOC continues until it

is stopped.

A-12

APPENDIX B

MONITOR COMMANDS

‘ An alphasetical list of all Monitor commands is included here to
make it easy to f£ind any particular one. Some are restricted, and
may be used only by someone logged in under account 1 or 3.

When typing a command, it is not always necessary to type the

" entire word. In fact, each command may be shortened as long as that

" command does not became ambiguous. For example, EXAMINE may be typed
instead as EXAMI, EXAM, or even EXA. However, EX or £ cannot be used,
because there is a command named EXTEND, and System Interpreter (SI)
would not know which one was wanted.

All numbers in SI commands are octal, with two exceptions.,
The word count in the EXAMINE command and disk segmert, counts in
all cases are in decimal.

Commands may be concatenated by putting a semicolon between them;
for example, DEPOSIT 0 5000; EXA 0 1; START 0 causes three commands
to be executed in sequence. Some commands may be entered while a
program is ruanning. To do this, preface them with a CTRL/B. CTRL/B
focllowed by AHERE will allow a user to find out what his program is
doing without stopping it.

All commands, terminated by a carriage return, cause SI to be
read from track 0 into field 2 to interpret the command. Many
commands require File Phantom (FIP) for processing. SI then causes
FIP to be read from track 1 into field 2 over SI and exacuted. When
FIP is finished, it must cause SI to be read in over PIP to finish

up.
Note that the functions of many of these commands may also be

accomplishecd by having a program execute a UUO, which often results
in calling PIP,

B-1

B.1l ASSIGN
Purpose
To allow a user to reserve a device. Devices are:
R - High-speed paper tape reader
P - High-speed paper tape punch
L - Line printer
D - DECtape o
C - Card reader
K

- RKS8E

Example:
«A R
R ASSIGNED
«A D
D @ ASSIGNED
A D 4
D 4 ASSIGNED

Note that one may either request a specific DECtape unit or one
can request any DECtape unit. The same is true for the RKSE.

If a specific unit is not requested, an available unit is assig

How? SI calls FIP to complete this cormand. FIP checks -
whether the user will get the device and, if so,

sets up a DDB and puts its address in DEVTS3L.

B.2 BREAK

Purpose

To fihd or ts chanée the value of the user's break mask.
When in user mode and tybing at the keyboard, the user's
break mask dztermines which characters are significant
enough to cause the user program to restart execution (if
itvis waiting‘for input). See IOT 6400-KSB Appendix C

for details.

Example:
+BREAK 4009

¢ BREAK
408039

First, the break mask is set to 4000. Then its value is

determined.

How? The break mask is kept in the third word of the
keyboard DDB. It is retrieved from there or

stored there by SI.

B.3 BROADCAST

Purpose

To allow a message to be sent simultaneously to all users.

May be used only by a user under account 1 or 3.

Example:

« BROAD THE SYSTEM IS GOING DOWN FOR P4 IN S MINUTES
%% THE SYSTEM IS GOING DOWN FOR PM IN S MINUTES

OK

The message is sent to everyone, including the sender.

Mow? The message is simply jammed into all output
buffers. SI checké to make sure the account
number of the sender is 1 or 3. If free core
runs out before the message has been given to

all terminals, SI returns the error message

"BUSY". Otherwise, the message OK is printed.

3.4 CLOSE

Purpose

To inform the Monitor that the user is finished with a file.

‘See OPEN.‘
’Example:,
+CLOSE 9
More than one unit can be specified at the same time.
Example:

LLOSE 8 1 2

How? FIP is called to process the command. FIP
'simply undoes everything done by an OPEN

command.

B.5 CREATE
Purpose

To allow the user to create a new file with the length of one
segment. The file must have a name consisting of 1 to 6 char
acters, the first one being a letter. 1If a file already

exists by that name, it is first deleted.Under acccunt 1, the

create command will not delete files (UFD's) i ; y
, : noer wil
duplicated account numbers to be created. 1 it alk

Example:
+CREATE FILE23

How? FIP checks for validity of the command, deletes
any file named FILE23, makes a directory entry
for FILE23, and reserves one disk segmeni: for
the file. A protection code of 12 i3 assigned

to the new file (see PROTECT).

3,6 DEPOSIT
purpose
To allow the user to change any words in the 4K of core at

will. The user gives any address, and up *-o ten (decimal)

‘values in octal to deposit.
gxample:
+DEP 10 7001 6046 5310
This deposit3 a simple program starting at location 0010.
How? ' As needed, SI either stores the values directly

in the user's core area or writes the information

t> the swap area on the disk.

B.7 DUPLEX
Purpose

To put the user's terminal into duplex mode. Normally,
when a user program is being executed, and the ferminal is
in user mode, characters typed aﬁ the keyboard are not
printed unless the program causes it. _Putting the terminal“,k

in duplex mode causes the Monitor to perform this function

automatically.
Example:
» DUPLEX
How? SI sets the duplex bit in the terminal keyboard

DDB. This is bit 4 of the first word of the DDB. =

5.8 EXAMINE
surpose

3 allow the user to examine his 4K of core at will.
rype the initial address first, and then the number

af words wanted (in decimal, up to 10), if greater

than one.
rxample:

+EXAMINE 10 2

70€¢1 6046

+EXA 12

5010
How? SI either takes the information directly

from the user's core or, if necessary,
reads the information from the user's swap

arxea.

B.9 EXTEND
Purpose

To increase the size of a file. The file must be opened first
(see OPEN). Give the internal file number, and then the number

cf segments (in decimal).
Exrample
+EXTEN 1 1@

Thig extends the file, which is presently open under internai‘;
file number 1, by ten segments. The segments are added to |
+he end of the file; any previous contents are unaltered. Any:;
flles belonging to account 1 (MFD and UFD's) may not be extaﬁa;
How? FIP processes the EXTEND. FIP reserves the requiﬂﬁ;
disk segments by setting bits in SAT, and makes the¢

necessary changes in the user's directory.

B-10

B.10 F
Purpose

To get information about a file. The file must first be

opened (ses OPEN).

Example:

Protectzi
coda

oF 1 V4

¢0a3 FILE23 @/Q 12 11

;o kbensse | S12€
Account k(’ffwu’jé"”

F”L»Aahe

- This indicates the file currently open under internal
file number 1 belongs to user (or account number) 3,

is named FILE23, has an extension of 0, has a protection
code of 12 (see PROTECT), and has a size of 11 segments

" (decimal).

How? FIP is called to obhtain the needed informa-

tion, which is then printed by SI.

B-11

B.1l1 FORCE
Purpose

The FORCE command helps the system manager control the other
users. If desired, the manager may interrupt or even log out
a user. The FORCE command allows the system manager or operato:
(anyone logged in under account 1 or 3) to connect to any other -
terminal long enough to issue a command. For example, if the";
user at keybocard 10 has the reader and will not release it,
the system managef may type:

+FORCE 10 RELEASE R
ILEASE R will be printed on the user's console {just as though '

tlie user had typed it), and the reader will be released.

The FORCE command works exactly like typing on the affected
console. Commands entered by FORCE are freated as Mcnitor ch'
mands only if that console is in Monitor mode. The user at ;
console uses the CTRL/B (echoed 4B) to put-the console in Mohﬂ~i
mode. Within a FORCE command, t+ is used to indicate that thé
next letter typed is a control character. For erample, the
above command should really be typed:

+FORCE 18 tBS3 RELEASE R
The uparcow followed by BS (not CTRL/B followed Ly S) acts juﬁ
like CTRL/B followed by S and assures that whatever the user?ti
console 10 is doing is terminated, allowing the release commaﬁi

to be executed. In general, when forcing a Monitor command,

B-12

precede it by an uparrow followed by BS and semicolon, as
shown above. Terminating the force command with a form-feed
(CTRL/L) will prevent a carriage return from being sent to

the forced terminal.

For example,.if the user at K10 complains that his terminal
is completely dead, the operator may discover with SYSTAT
that he typed a CTRL/S accidentally. To restart this user,

the operator may type:

+«FORCE 19 1@

and terminate the command with CTRL/L (Form Feed) instead
of a carriage return. Terminating with CTRL/L is also use-

ful when forcing a CTRL/C to a user.

When bringing down the system, the following command wi'l

stop most obstinate users:
«FORCE 10 *B'BS;K:Q

Care should be exercised. If there is an error in typing the
FORCE command, the error message may show up on the forced

console, and the user will not know what happened.

How? The forced command is placed into the propar
keyboard buffer. If the command includes an
uparrow, the next character is changed to a

control character.

B-13

B.12 KJOB

Purpose
A KJOB is identical to LOGOUT in function. See LOGOUT.

B.13 LOAD

Purpose

The LOAD command allows the user to load the core area with
data from a disk file. Often, this file is created by a SAVE
cormand, and has an extension of .SAV. To use load, type
(épparated by spaces):

a) LOAD

b) The account number the file is under. May be
omitted if it is the user's own account.

c) The name of the file.

d) The address within the file at which to start.
If omitted, 0 is assumed. :

e) The address in core at which to start. If
omitted, 0 is assumed.

f) The address in core at which to stop. May be
omitted. The transfer will continue until one
of three things happens:

1) The end of core is reached

2) The end of the disk file is reéched, or

3) The core stopping address (if given) is réaﬂff'

B-14

Examples:
«L0AD PIP
«LOAD 2 SYSTAT

+LOAD PIP 200 300 400
+LOAD PIP 200

The first example reads the file named PIP into the user's
~core, starting at location zero. " The second example does
the same task for the program SYSTAT which is stored under
account: 2. The third example reads 201 words from the file
named PIP into core, starting at file address 200 and con-
tinuing through core address 400. The fourth example reads

the file PIP starting at file address 200 and core address C
How? SI calls FIP to open the file under internal numbe:

3, and then passes a RFILE parameter block to the

file handler in the resident monitor.

B-15

B.14 LOGIN

Purpose

To notify the Monitor that a person wishes to use a terminal,
and to give an account number and password. Type LOGIN,

then a space, the account number, a space, the password,

and then a carriage return. If the LOGIN command is
terminated with a line feed, the login message will not be

printed.

Note that the command itself is not printed, to protect the B

password.

How? First, SI checks the command for validity. Then
FIP is called to set up a number of tables to
indicate terminal assignments, what time the user

obtained it, and the user's job number, etc.

B-16

»15 LOGOUT
:ypose

-y indicate to the Monitor that the user is finished and ready to
save the term:nal. Also, LOGOUT gives the user a number of
“-nvenient options. Type LOGOUT:? for an explanation of options,

‘- substitute one of the following for the ?2:

K - to cause the LOGOUT to delete all non-protected files.
L - to list the user's disk directories.
S8 - to save all non-temporary files, or

I - to individually determine whether to save .or delete
each of the user's files. Each filename will be printed.
Type a P if it is desired to protect this file, an S to
save it as is, or a carriage return only to delete the
file.

Q - to logout quickly and quietly.

~ oyping no option causes a logout with the default option, wiich is

rxample:

LOGOUT? I

JINK «ASC <12> 1« BLOCKS

¢RT *SAV <l12> 6. BLOCKS 't S

"20SL «SAV <l2> 6+ BLOCKS ¢ S :
ot A% <12> 1. BLOCKXS 3 DELETED
;ILE23 <12> i1« BLOCKS s P

8 1» USER [@, 3) LOGGED OFF K@@ AT 21:16139 ON 28 JUL 74
-LETED 2 FILES ¢ 2. DISK BLOCKS)

CIWED 3 FILES ¢ 23. DISK BLOCKS)

NTIME @0180:18 ¢ 1.+ CPU UNITS)

+APSED TIME 20106349

B.16 OFF
Purjomse:

When the manager desires to bring down the system for variov -
reasons, the OFF command is given. (The manager must be logged i
under account 1 or 3). Then, anyone who does a LOGOUT cannot L@-

unless the account number is 1, 2, or 3. See ON. The manager ¢ -

then broadcast warnings and/or force a LOGOUT.

Example:
« OFF f
02 SI sets: FIFFJ in field 1 to 7774, allowing only acéoufii
1, 2, or 3 to log in. E
8.17 on
PFurpcse

¥
¥

[

The opposite of the OFF command. See OFF. Used by account: :
only. The system is restored to its normal state so that anyjﬁﬁi

may LOGIN.
Example:

+ ON
How? SI sets F10FFJ in field 1 to ZERO, its normal value.fiQ

B-18

3.18 OPEN

purpose

Whenever files are manipulated by the user, they are
identified by "internal file numbers." At any one time, a user
may have access to up to four files, with internal numbers ¢
through 3. The open command associates the internal file
-numbers with the actual file on the disk.

Example:
+OPEN 1 FILE23

Assuming that file FILE23 already exists

(see CREATE),

this statement now allows the file named FILEZ23 to be referenced

with the intzrnal file number 1.

Account 1 may open any user file and not be protected
regardless of the setting of the files protection word, provided
- the file,is not open to another user.

‘always write protected even against account 1.

Account 1 files are

Account 1 has the privilege of deleting any file which is
not in use merely by opening and reducing the file.

+OPEN @ GAMES 14,33REDUCE @ 3000

For example:

will delete the file GAMES which belongs to account 14¢3. See

also REDUCE command .

B.19 PROTECT

purpose

Each file has a protection code assigned.

- determines who may read or write

is stored in the disk directory,
code and the filename extension,

0 1 2 3 4
Filename Extension

Bit 11, if 1, means that the
whose project number differs

Bit 10, if 1, means that the
whose project number differs

Bit 9, if 1, means that the

the file.

This ccde

The protecticn word

and includes the protec:zinn
as follows:

5

A

6

file
from

file
from

1]

7 8

cannot be read by

9

the owner's.

cannot be altered

+the cwner's.

annot ke

project number is the same as the owner's.

'/ Bit 8, if 1, means that the
whose project number is the

Bit 7, if 1, means that the

B-19

-~
a

~
ac

10

-
FORSY

Unused Protection Code

11

o
Ul
6]
iat
M0

hv users

file cannot be altered by users
same as the owner's.

user cannot alter his own Iile,
without first changing the protection.

NOTE

A user's projoct number is the first 2
digits of the 4-digit account number.
The system normally sets bits 8 and 10
for the user protection code 12,

The filename extension gives additional information abcut the
file, which is printed in some diraectory.listings. The filename
extension codes are:

0 blank

1 .ASC ASCII files, such aa FORTRAN sourcs.

2 .SAV Save format files.

3 .BIN Binary files; must be loaded with program
LOADER,

4 .BAS BASIC source file.

S .BRC BASIC compiled program file.

6 FCL FOCAL file.

7 .THP Temporary file

10 blank

11 .DAT BASIC data file.

12 JLST Listing file

13 .PAL PAL source

14-17 blank

The protection word may be set by using PROTECT:

«PROT 0 0217

This changes the protection of the file open under internal file
number 0 so that the file has an extension of .ASC, and that it cannot
be read or written by any person other than itgs owner. '

This command changes the protection word of the file, currently
opened under internal file number zero, to $217. Since bits §-4 ere
equal to Pl, the files have an extengion code of .ASC. Since bits
8,9,10 and 11 are set, the file will not be accessible to anyons

other than the user. The protect command cannot be uSed for M¥D's and -
UFD's. See the REN IOT for details.

How? FIP is called to do the actual protect word changirg. The
protect word i{s in word four of the name block for the file
in the user's UFD.

B-20

B.20 R

Purgose

The R command searches the directory of account 2 (Library) for
a program and, if found, loads it and starts execution at location 0.
If the program name is followed by a_number, execution will start at
that address instead of at 0.

Example:

R CAT

CAT will be executed, and will list the directory. R CAT is
equivalent to RN 2 CAT.

How? SI calls FIP to open the file for the program, then passes
a RFILE parameter block to the file handler in the Monitor
to read it in. It then causes execution to start at loca-
tion 0, or the address specified. The R and RUN commands
operate slightly differently than the LOAD command. If the
program to be run is shorter than 4K, the unused portion of
ccre may end up containing part of SI rather than what was
there before the R or RUN.

B.21 REDUCE

Purpose

To make a file smaller, REDUCE removes segments from the end
of the file, leaving the others (if any) intact. 1If a file is
reduced until there is nothing left, the file is deleted completely,
including the entry in the user's directory.

Example:

sRED 1 5

The first command causes the file open under internal file number
1 to be shortened by five segments. The second command deletas the
file open under internal file number 0, provided its length is 1000
segments or lesis. :

Account 1 files (UFD's) cannot be reduced if there are any
users logged in on or using the UFD, or if the UFD owns any {iles.

How? SI calls FIP to do the REDUCE. FIP finds the first segment
of the file to be deleted, removes it from the directory,
calculates its bit in SAT, clears that bit, and repeats the
whole operation the desired number of times.

B.22 RELEASE

Purpose

To release devices so that other people may use them. The
opposite of ASSIGN. '

Example:

«REL R
«REL D |

The first command releases the high-speed reader. The second
command releases DECtape unit 1.

How? Provided the user owns the device, SI calls FIF which
zeroes the proper word in DEVTBL, releases the DDB to. free
core, and charges the user's account for the elapsed time.

B.23 RENAME

Purgose

To allow the user to rename a disk file.

Example:

+«REN 2 HELPME

The file currently open under internal file number 2 is given the
name HELPME The keyboard RENAME cammand will not rename a MFD or UFD ©
(which would change passwords).

How? ST calls FIP, which changes the name in the user's UFD.

B-22

B.24 RESTART

Purgosq

To set or determine the restart address.

Example: ' o

*RESTART 20¢
«RES
2200

When the program is running and CTRL/C (+C) is typed, the Monitor
causes the program to restart execution at the restart address.
Thus, after the first command above has been given, if the user types
CTRL/C (4C) during program execution, the effect will be a CLA CLL
and a JMP to location 200; Monitor also clears the terminal buffers
when it recognizes the tC. The second cormand determines the current
restart address.

How? SI sets the restart address in the user's job status
block 0, the 7th word.

B.25 RUN

Purgosg .

The RUN command searches under an account number for a file.
If it is found, it is loaded into core and executed. If the program
name is followed by a number, execution will begin at that address;
otherwise it will begin at 0.

Example:

«RUN MYPROG
+RUN 1234 PROGB

The first command requests the program named MYROG to be loaded
and executed. Since no account number is given, the user's account
number is used to search for the program.

The second command requests execution of PROGB, stored under user
number 1234. It is equivalent to LOAD 1234 PROGB; START 0.

B~23

How? SI calls FIP to open the desired file, then passes a RFILE
parameter block to the file handler in the Monitor to read
it into core. It causes the user to start executing at
locaticn 0, or the address specified.

B.26 S
PU!‘EOSQ

Stop the user's program, The terminal is in Monitor mode at this
time.

Example:

&'()*+a--/0123456789:3<=>?0ABCDEFGHIJKLMNOPQRS'BS‘

It is necessary to type CTRL/B, to put the keyboard in Monitor
mode, before the S can be typed. If unwanted output is occuring,
the user can type CTRL/B twice to stop the output, followed by S and
carriage return to stop the program.

How? S8I clears the run bit in the user's STRO.
B.27 SAVE

Purpose

To write out portions of the user's core area to a disk file.
The SAVE command has the same format as the LOAD command (see LOAD).

Example:

« SAVE NEWPRO
«SAVE PROG2 200 200

Be sure that the named disk file exists and is the proper size.
How? I calls FIP to open the desired file, and then passes a ‘ K

WFILE parameter block to the file handler in the Monitor
to do the requested disk transfer.

B-24

- B.28 START

Purgose
To begin or continue the program which is already in core.

Example:

.START
+START 10

The first command is similar to the PDP-8 continue key. A
program is continued from the place where a HLT instruction was
executed or a CTRL/B followed by S was typed. The second command
clears the AC and LINK and begins execution at address 10.

How? The START command, if an address is given, causes SI to
alter the user's saved registers to the proper value.
The run bit is then set, allowing the job to execute.

B.29 SWITCH

PUI‘EOS&_

To find the value of or set the user's switch register. The
switch register is implemented by software to prevent users from
having to set the computer's switches, There is no way that the
uger can determine the hardware SR setting, short of looking.

Example:

*SWITCH 3219
«SY
3219

The first command sets the switch register to 3210. The second
command determines the value from this point. Whenever the user does
an OSR, the constant 3210 will be ORed into the AC.

How? Each user's switch register is stored in the job status
block 1. SI simply stores the SR there.

B.30 SYSTAT
rurpose

To obtain information about the status of the SYSTEM.

Example:
«SYSTAT

STATUS OF TSS/8.24 DEC PDP-8 ¢l AT 19:42:29 ON 20 JUL 74

UPTIME B9:27:55

JOB WHO WHERE WHAT STATUS RUNTIME
1 @, 3 Koo SYSTAT RUN 1@ 00:00:09

2 3, 3 K4 PIP 'BS 1Q 00: 0008
AVAILABLE CORE @K FREE CORE=311
BUSY DEVICES
DEVICE JOB

Kl 2

219 FREE DISK SEGMENTS

For installations with a line printer, type

SYSTAT:L
How? SYSTAT ef?gctively causes a R SYSTAT.
B.31 TALK
Purpose

To enable messages to be sent between terminals.

B~-26

Example:

.TALK 1 DID YOU HEAR ABOUT JOHN?

If terminal 1 is not busy, the above message is printed on the
console. 1If it is busy, SI will return the error message "BUSY."
Accounts 1 and 3 are usually allowed to interrupt even when a terminal
is busy.

B.32 TIME

Purgose

To get information.

Examples:

« TIME
P2: 00205
+TIME @
22:112:38
«TIME 2
pRs@D:25

The first example gives the elapsed processor time used by the
user issuiné the TIME command since he logged into the system. The
" second example gives the time of day. The third example gives the
amount of processor time used by job 2 since the user logged in.

How? SI takes the information from the prcper location, converts
and prints it.

B.33 UNDUPLEX
Purpose

To take the user's terminal out of DUPLEX mode. (See DUPLEX).
Example:

« UNDUP

How? ST clears the DUPLEX bit in the user's kevboard DDB.

B-27

To find information about a selected job.

Example: -
«USER
JOB 91 (09,031 Koo
+USER 2
JOB 82 (21,231 Ko4

The first command informs the user that he is job 1, account 3,
and is at console 0. The second command asks about job 2, which is
being used by account 123 at terminal 4.

How? SI takes the information from various tables in ccre.
B,35 VERSION

Surpose

To determine the version number of the Monitor currently running.

Example:
+VERSION
TSS/78.24

How? SI prints the answer.

B.36 WHERE
Purpose
To determine the status of the user's program.

Example:

+WHERE
SWw=3210 PC=0000 L=0 AC=0000 MQ=5602

B-28

all registers relevant to the user are printed. SW is the switch
register (see SWITCH). This command is useful when used in con-

junction with a CTRL/B, it enables the status of an executing

+

DU N

. [X <. ‘ - . . }
~program to be determined without stopping.

' How? SI takes the information from the user's job status

block 1.

APPENDIX C

UNIMPLEMENTED USER OPERATIONS
(UUOs or user IOTs)

This Appendix includes a numerical list of all the valid UUOs.

yhenever an IOT is executed by a user, it causes a trap intc the
-tor., The Monitor looks for the IOT in a table, and one of several
~gs happens.

I1f the IOT is not found in the table, the Monitor simply returns
‘n2 user's program:; the IOT functions as a NOP.

. ff the IOT is resident - i.,e,, if code to handle the IOT is in
» - the Monitor executes the proper routine,

1f the IOT is non-resident, FIP must be called. If the IOT is

st- i.e., if all information transfer is through the user's

‘igters - the IOT is ANDed with 0377 and stored in JOBLNK in the
.-'s job status block 1. If .the IOT is a long non-resident 10T,

. AC will contain the address of some parameters. These paramcters,
-g with the IOT, are transferred to a free block, the address of the
» block is placed in JOBLNK, and FIP is called. ©Note that frce

"2 always starts above address 377 so that FIP can tell whethaor
K contains a f£ree core pointer or an IOT. If FIP cannot fiiure
why it was called, it executes a HLT.

‘. 6004 - GTF - Get Flag (PDP-8/E only)
' The link is placed into ACO, and the EAE GT flag (if preser@
is placed into ACl. The rest of the AC is cleared.

6005 - RTF ~ Restore Flags (PDP-8/E only)
ACO is placed into the 1link, and AClL is used to set or clear
the EAE GT flag. (if present) The AC is not change:d.

6006 -~ SGT
This JUO causes a skip if the GT flag is set. Applicable
only to 8E systems witnh EAE.

6010

6011

6012

6014

6016

6017

- RRS - Read Reader String

Before executing the RRS, load the Load AC with the address
of a 2~word block, where: '

Word 1: 1is minus the number of characters to be transferred.

Word 2: 1is the address of user core, minus one.

This starts the transfer. These characters will be read
from the high-speed reader and placed in the user's buffer.
The AC is cleared by RRS. The two words are incremented
according to the number of frames read. A system error is
generated if the tape runs off the end. See 6431-SEA.

- RSF - Skip on Reader Flag
The next instruction is always skipped.

- RRB - Read Reader Buffer

The next character from the high-speed reader buffer is ORed
into the AC. 1If the buffer was empty, the reader is started
and this command is not executed until the buffer is nearly
full.

NOTE

Successive RRBs will not retrieve the same
character.

~ RFC - Reader Fetch Character

This instruction performs no operation.

- RRB RIC
Functions as a RRB.

- RCB -~ Reader Clear Buffer

This IOT causes the high-speed reader buffer to be cleared
of any frames read from the tape but not yet transferred to
the user's core. This is useful between tapes wha2n reading

more than one tape.

- P5T ~ Punch String

Before executing PST, load the AC with the address of a
2-word block where word 1 contains the negative of the num-
ber of characters to punch (word count), and word 2 contains
beginning address minus 1 of the string to be punched

6021

6024

6030

(current address). The block of data will be punched and
control returned to the IOT+2 with clear AC. If the PST

does not punch all the characters, control is returned to
the IOT+1.

NOTE -

On most string IOTs, the following pro-
gramming sequence may be used:

TAD ADDR
PST
JMP ["2

ADDR» TWOWD
TWOWD, ~10
BUF -1

As characters are placed into the punch buffer, the word
count &nd current address are updated. If word count reaches
zero, the straing IOT skips, going to the instruction follow-
ing the JMP, However, if the buffer fills up, the Monitor
returns control to the JMP.-2, causing the IOT to he retried.
If des.red, the JMP.-2 may be replaced with a jump to other
processing, which can later return to retry the string IOT.
This allows a program to overlap I/0 to a greater extent.

- PSF - Skip on Punch Flag
The next instruction is always skipped.

- or 6026 - PLS - Punch Load Sequence
The AC is placed into the punch buffer, but not cleared.
Note that bit 10 of a PLS is ignored (6022 is a NOP).

- KSR - Read Keyboard String

Execution of this instruction initiates a transfer of one or

more characters from the user’'s keyboard to a designated core

area. Before executing KSR, load the AC with the address of

a 2-word block, where:

Word 1: negative of the number of charactars to be
transferred.

Word z: address of the cora ar2a into wnich charac+ars
to be placed, minus one.

]
%%
@O

C-3

The transfer is terminated when either:

a) the indicated number of characters have been input, or,

b) a delimiter is seen. At the end of the transfer, the
word count and core address are updated and the AC is
cleared.

6031 - KSF ~ Skip on Keyboard Flag
Operation - the next instructfgh is skipped : f the keyboard
flag is set. The flag is set whenever a delimiter character
is typed. If the KSF does not skip, and is followed by a
JMP.-1, the user will be put into a wait state until a
delimiter is typed.

6032 - KCC - Clear Accumulator.

6034 - KRS
A character from the keyboard buffer is ORed into the user's
AC. If none are available, the job is put tc sleep until a
delimiter is typed. User will be put into a wait state until
a delimiter is typed. See 6400 - KSB.

6036 - KRB - Read Keyboard Buffer
A combination of the 6032 and 6034 instructions.

6040 - SAS - Send a String
Causes a block of data to be output to the user's terminal.

Before executing ap SAS, load the AC with the address of a
2-word block, where:
Word l: contains the negative of the number >f characters
to be sent.
Word 2: contains the address ~1 of the first word of the
string.
The characters are stored one per word right justified start-
ing at the address specified by word 2. Upon execution of
SAS, the system takes only as many characters as will fit
into the output buffer. It then makes the appropriate
adjustment to word 2 to indicate a new starting address and
to word 1 to indicate the reduced character count. It then.
returns to the instruction following the SAS. If the
character count is reduced to zero, the instruction follow-
ing SAS is skipped. The instruction following the SAS should
contain a JMP.-2 to continue the block transfer of terminal
characters. The AC is cleared by SAS.

See 6020 - (PST) for sample string programming.

6041

6042

6044

6200

- TSF - Skip on Teleprinter Flag

The next instruction is always skipped.

- TCF - no operation is performed.

- 6046 - TLS - Load Teleprinter Sequence

The contents of the AC are placed into the user's teleprinter

buffer.

- CKS - Check Status
Load the AC with the address of a 3-word block and execute

the CKS.

Upon return,

the AC will be 0.

STRO, STR1, and

the clevice status register will be placed into the 3-word

bloclk.

STRO- Bits

9--11

STR1 Bits

VIRtV

o~y

Wow o~

Run Bit
Exror Enable
JCOMBD
JSPEEK

JSAaCC

JSIOT

JSIOTC

JSINER
Exrror Code

Timer
File 0
File 1
File 2
File 3
Keyboard

Line Printer
Teleprinter
Reader

Punch

The formats of these registers are:

User program is in the run state
Program handles its own errors
Program was compute bound

User has R privilege

User is privileged account
Syvastem use only

System use only

Not usedq

System use only

System detected error condition:

Illegal IOT

Swap read error
Swap write error
Disk file error
Hung device

DU+

Time is up

Internal file 0 is not busy
Internal file 1 is not busy
Internal file 2 is not busy
Internal file 3 is not busy

There is a delimiter in the
input buffer

Output buffer is not full
Output buffer is nct full
Character in reader buffer

Punch buffer is not full

6400

6401

10 Errxor System error detected, code in
bits 9 through 1. of STRO

11 Wait Job is not waiting.
Device status register: See IOT 6772-RDS- for details.

-~ KSB - Set Keyboard Break
This performs the same function.as the Monitor BREAK
command.

Operation: Rather than activate a user's program to receive
each character as it is typed, EduSystem 50 accumulates

input characters until a certain character(s), is seen.
To tell the Monitor which characters to look for (these

characters are referred to as delimiters), load the AC with
a l2-bit mask before executing a KSB. For each bit set in
the mask, the Monitor considers the corresponding character

or characters to be delimiters.

Bit Specifies

= check rest of mask

= any character is break
301-332 (all letters)
260-271 (all numbers)

211 (horizontal tab)

212-215 (line feed, vertical tab, form feed;
RETURN)

241-273 (1"#S8&7 () *+,-./:3)

240 (space)

274-300 (<=>2@)

333-337 (B 1. (__)

377 (RUBOUT)

375 (ALT MODE)

any characters not mentioned above.

0 0
1

B W N

O W o A O

1
1
Alternatively, clear the AC and execute the KSB. The Monitor

will return the current value of the user's break mask in the
AC. '

- SBC - Set Buffer Control

SBC permits the user program to clear its terminal input
and/or output buffer. Before executing SBC, set bits 0 and
1 of the AC as indicated below:

Bit 0 = 1 (lear output buffer.
Bit 1

1 Clear input buffer.

6402

6403

6405

6406

6411

6412

6413

6414

6415

~ DUP - Duplex
Performs the function of the DUPLEX Monitor command. No
user registers are affected.

~ UND -- Unduplex
Performs the function of the UNDUPLEX Monitor command. No
user registers are affected. .

- CLS -~ Clear Status

Load the AC with the address of a 3-word block. Any bits

set in this 3-word block will be cleared in the user's STRO,
STR1, and device status register. Use this ICT with caution.

- SEGE - Segment Count
The number of available disk segments is returned in the AC.

- URT - User Run Time

Load the AC with the address of a 3-word block; where word 1
conta..ns the number of the job for which the run time is
soughz. . The run time is returned in the last two locations
of the block. If job 0 is specified, the run time of the
current job is returned. The AC is cleared.

~ TOD ~ Time of Day

Load the AC with the address of a 2~word block. The value
of the system clock will be placed in the twc locations, and
the AC will be cleared.

~ RCR - Return Clock Rate
The number of clock-ticks per second (ten decimal) is

returned in the AC.

- DATE - Date

Returns the date in the AC. The format of the date 1is
((YEAR=-1974)*12+ (MONTH~-1)) *31+4DAY~1. This number will
overilow in 11 years, 4 days; Jan. 4, 1985 is the last day

which will work without changing the basc year.

- 8YJ ~ Quantum Synchroniiation

This instruction causes the scheduler to allow any other
program to run. When this program is restarted after the
SYN, it will have a full gquantum (200 ms) of execute time

without being swapped out.

6416 - STM - Set Time
Load the AC with a number. The job will be suspended for
the number of seconds in the AC. The user's job is put into
a wait state, and the two's complement of the AC is placed
into CLKTBL, where it is incremented once a tecond. When

it reaches zero, the job is allowed to run acain.
SERAA

6417 - SRA - Set Restart Address
This command allows the user to specify an address to which
control is transferred when CTRL/C is typed cn the user's
console. Load the AC with the restart address and execute
SRA. If CTRL/C is detected, the program's input and output
buffers are cleared, the AC and Link are cleared and control
goes to the restart address.

This function is also performed by the RESTAFT Monitor

command.

6420 - TSS - ékip on EduSystem 50
The next instruction is skipped and the current version
number of EduSystem 50 is placed into the AC. This instruction
is useful in programs which may run under EdLSystem 50 and also
under other operating systems, where it will function as
a NOP.

6421 - USE - User
Returns in the AC the number of the current job.

6422 - CON - Console ;
Returns in the AC the console number assigned to the job
whose number was in the AC. If that job does not exist,

-1 is returned.

6423 - PEEK - Peek
Allows the user to inspect the Monitor core; fields 0 and 1.
Load the AC with the address of a 4-word block whers

Word = Monitor field in bits 6-8

1
Word 2 = Starting Monitor address
Word 3 = Starting user address
4

Word = Two's complement of number of words to transfer

The specified Monitor information will be transferred to

the user's core, and the AC cleared.) .

6430

6431

6440

PEEK is a privileged IOT. Privileged 1I0Ts may be executed

only in 2 cases: If the account number of the user is 1

thr
The

ouch 3, or if the I0T is executed by a library program.
privilege for the second case is enabled by the R,

SYSTAT, LOGOUT, and KJOB commands, and is cleared every
time &I is entered. The privileged IOTS are allowed if
either privilege bit in STRO is set; if not, the IOT gen-

erates an error condition.

- SSW -~ Set Switch Register

The

req

content of the AC is stored in the user's switch
ist:er, and the AC is cleared. The Monitor command

SWITCH performs the same function.

- SEA - Set Error Address

This instruction allows the user to specify an address to

which control is transferred in the event of a system error.

Load :he AC with an address before executing SEA. If a

system error is detected, the Monitor simulates a JMS to the

error address. The program counter is stored in the error

address and control transferred to the error addreés +1.

AC,

Link, and input/output buffers are not affected. The

error code of the system error is in STRO bits 9-11.

The error routine must read these bits (by

a CKS) to determine the cause of the error, then clear them

by means of a CLS.

The
due
1)

2)

The
10T
and

Mon

only error code that occurs in ncrmal system usage 1is

to a hung device. The error occurs, for example, when

the user attempts to use a punch not already turned on or,

allows the paper-tape reader to run off the end of a tape.

1llegal 10T error probably means that an assianable device

was executed without the device first being assigned. Swap
tile errors occur if a hardware error is detected while the

itor is swapping user programs, or readiny or writing file

directories. These are system malfuncticons from which there

is nc recovery.

~ ASD - ASSigm Device
1f the device specified by the content of the AC is avail-

able, it is assigned to the user program and the AC 1s

cleared. Otherwise, the job number of the device is placed

in the AC. If the device does not exist, 7777 is returned

in

the AC.

4000 Paper-tape reader .

4001 Paper-tape punch

4003 Line Printer

4004 Card Reader

4005+N DECtape unit N, N=g-7
4015+N RKB8E drive N, N=@-3

The assignment is in effect until a corresponding REL instruction
or LOGOUT. .

The same function is performed by the ASSIGN Monitor command.
NOTE

The device number for the line printer
has been changed to 4003 from 4002.

6442-REL-Release Device
The device specified by the contents of the AC is released
(providing it was owned by the user executing the REL). The
AC is cleared. Releasing a device makes it available to
other users.

The same function is performed by the RELEASE Monitor
command .

6600-REN-Rename a File
REN is used to change the name of a file. Load the AC with the

address of a 4-word block where:

Word 1: contains the internal file number associated .
with the file whose name is to be changed.

Words 2-4: contains the new name. This name is in 6-bit
characters and packed two in a word.

The same function is performed by the RENAME Monitor command.

Wien executea under aceount 1, the REN IOT has a special function. Load
nwith the address of a four work block, where:

Word 1: Contains the account number of an existing user
Words 2-3: Contains the desired password for that account, and
Word 4: Contains the desired disk quota for the user.

The UFD to be renamed need not be open. The quota is placed in the word
wzerved for the protection code in files. For UFD's, bits @ through 5 of the
~:ta are reserved for future use. Bits 6-11 contain the disk guota for that
sount divided by 5. The quota word for the MFD contains the grace quota. This
+a 12-bit number 'not divided by 25) which determines how many segments over
“i5 quota a user may extend his files.

Upon return “rom all file IOTs, the AC is either cleared or contains
-2 0f the following error codes:

4000 There was no file open on the specified internal
' file number. On an open command, this error indicates
the open failed because of a 1 ck of table space oxr
free core.

4400 Attempting to alter a file which is open to another
user (or to one user?)

“ssiee oo . 10X @ user whose directory is
full, or who has ’Piched 0z exceeded his disk guota.

5400 Bad directory

6000 File protection violation

6400 Invalid file name

7000 Attempting to open a nonexistent file

7400 The disk is full.

)01l - OPEN - Open a file

Open is used to associate a file with an internal file number.
This 1s necessary because all file operations are in terms of
internal file numbers. Before executing the OPEN IOT, load the
AC with the beginning address of a 5-word block, where:

word 1l: contains the internal file number.

Woerd 2: contains the account number of the file owner.
If O, the account number of the current user is
specified.

Word 3-5: contain the name of the file to be opened. This name
is in 6-bit characters packed two to a word.

It there was another file associated with the internal file number,
beford the execution of the OPEN IOT, it is closed automatically.
This is done before the new file is associated with the internal 7
number. Account 1 may open any used file and not be protected,
recardless of the setting of the file's protection word However,
account 1 files, (MFD,UFD'S), are always write-protected even agi-
account 1. '

02 - CLOS - Close a file

CLOS terminates the association between files and their internal
file numbers. Before executing CLOS, load the AC with a selectits
pattern for the internal file numbers whose associated files are ©
be closed. The file is closed if bit I is 1, where I = bit 0,1l,%-

The same function is performed by the CLOSE Monitor command.

13 - RFILE - Read file and - 6605 - WFILE ~ Write file
Once the association of a file with an internal file number has ©-
bean made, these IOTs allow the actual file referernce to be made.
-re illegal on a file that has not been opened (associated w1th ar

aternal file number).
c-12

ad or write a file, load the AC with the address of a 6-word
-z, then execute the I0T. Thae format for the 6-word block is:

1 1ls contains the high-order file word address
.1 23 contains the internal file number.
1 3 contains the negative of the number of words for the

operation. This number is either the number of words
-to be read or the number of words to be written.

A d: contains a pointer to the beginning address -1 of a buffer
located in the user program. On a read operation this
buffer receives the information from the file; on a write
operation this buffer holds the information that is to be
sent to the file.

;giS: contains the least significant 12 bits of the initial file
‘ word addrzss to begin the operation.

vd 62 contains an error code:

If no error

If parity error

If file shorter than word count
If file not open

If protection violated

DW= O

2 read or write begins at the word specified by words 1 and 5.
For example:

TAD X .
WFILE
X otl
2
1
-200
6477
200

.anss write 200 (octal) words starting at word 200 of the file associat

ith internal file number one from a core area starting at location ©50.0.

yoUd

0605

6610

e6ll

After completion of the transfer, the word count (word 3) and
core address (word 4) are updated. If an error was detected
the appropriate error code is placed in word ©.

- PROT - Protect a file

To use, load the AC with the desired protection word in bits
0-4 and 7-11, and the internal file number of the file to be
protected in bits 5-6. The meaning of the bits is explained
in the PROTECT Monitor command. {See 6H500-~REM for error
conditions.) For directories, the REN IOT must be used.

- WFILE - Write a File
WFILE uses the same calling form as RFILE; see 6603 - RFILE.

This command performs the same function as the SAVE Monitor
command.

- CRF - Create a File

The user can request the system to create a new file of one
segment. The user provides the new name for the file. Load
thie AC with the beginning address of a 3-word block, where:
Wwerd 1 through 3: contains the 6-character name.

If there is some reason why the request cannot be granted,
the system will return a non-zero error code in the AC.

(see 6600-REN for error conditions.) The protzaction code

of a newly created file is 12. When account 1 creates a file,
the two accounting words are zeroed by file; as is the file
itself. .

This command performs the same function as the CREATE Monitor
command. ’

~ EXT - Extend a file
To extend the length of an existing file, that file must be

currently open. Load the AC with the beginning address of
a 2-word block, where:

wWord 1l: contains the internal file number of the file to ke
extended. ‘
Word 2: contains the number of segments the system should

append to the file.

When a f:1 1s to be extended, a check is made to see if the entire
ewtend w.! succeed. If not, the extend will not be started. If
arn extend 8uses a users total file size to exceed his quota, tho
Monitor wi 1 allow that file to be extended only until the quota has
been exceo €d by the grace quota. The first time that any file is
extended s that its owning account is over quota, the Monitor will
orint an i formational message such as:

MY FILE EXCEEDING DISK QUOTA
“here MYFI E is the name of the file being extended.

“hen a use. has reached his quota, he may no longer create any file.
an attempt 30 extend an account one file (MFD or UFD's) will always
fail.

If, for sol 2 reason, the request to extend a file cannot be granted,
;“he AC wil contain 4000, 4400, 6000, or the number of segments it
;failed to ppend. See 6600-REN for error conditions.

‘“his comma 1 performns the same function as the EXTEND Monitor command.

€12 - RED - Reduce a file
‘ To re ice the length of an existing file, that file must be cur-

, rentl open. Load the AC with the beginning address of a 2-word
E bhlock where:

Word @ contains the internal file number of the file to he
reduced.
Word = contains the number of segments to be removed.

If negative, the file will be deleted.

‘his requet is granted unless the file to be reduced is currentlv opened
another iser or if the file is write protected against the user. See

1*800-REN fir error conditions. A UFD can only be reduced if the account

inactiV and owns no files. Reducing a UFD always causes it to be

eted if~vord 2 is non-zero.

- el 43
Sy o)

HIVEE
55 L

Jot

1813 -~ PId -~ File Information

FINF :1ables a user program to determine what file, if any, is
asso¢ated with an internal file number Load the AC with the begin-
L ning:3idress of a 7-word block, where:

{ Wordl: contains the internal file number for which the user

K program wishes information.

Woxd: 2-7: contain the information that the system returns after
executing FINF.

: Word:: contains the account number of the owner, or zero, if no
K file number, that is, the file is not open.

Word 3-5: contain the name of the file in 6-bit code.

C-15

rd

>1d

>14

SR

»16

317

i

-6

6 contains the protection code. See the Monitor command PROTE
(Disk quota if directory)

73 contains the number of segments which compose the file.

commaend performs the same function as the F Monitor command.

v

- SIZE - Return segment size
This UUO sets the user's AC to 0400, the size of a disk segment.

- LIN - Log In

When SI calls FIP with a 6614, FIP will perform a LOGIN. A prog:

cannot execute this IOT (see SIZE).

- L&SOUT - Log out

This is a triple purpose IQT. If the AC is zero, it will return
the mumber of users logged in with the same account number as the
uscr executing the IOT. If the AC contains the job number of the

usor's job, the user will be logged out. All assigned devices a-

released, and user's terminal becomes inactive. LOGOUT is a priv-

iledced IOT. See 6423 - PEEK for details. If account 1 execute:
the IOT with AC equal to negative job number, FIP will reset all
~ptj and device time accumulators in the MFD; this is used by the
Resat command in CAT.

- WHO - Who

The account number and password of the current job are returned
to the 3-word block whose address is in the AC and the AC is
cleared.

\

- ACT - Account

Load the AC with a job number. The account number of that job
is returned. If the AC is 0, the account number of the current
job is returned. If the reguested job does not exist, O is '
returned.

- RCRA - Read card Alphanumeric

- RCRR ~ Read Card Binary

bR S bl

- —~
— b T2 1 z Y
FAaR PR A SEQG Laxr

ompressed

[o
0

“osad the AC with the address munus 1 of an 80-word buffer. A ce.’

13 read and the data is put into the buffer in the same form asfl
corrresponding hardward IOT. The UUO returns in the AC the numbﬂ'
characters successfully transferred to the user's buffer. (See ™

6772 - RDS.)
Cc-l6

1

,~ LST - Line printer Send-a String

Performs the same function as a 6020 - PST, except that the output
goes to the line printer.

i = LSF - Line printer Skip on Flag
- The next instruction is always skipped.
§ - 6664 - LPC - Line Printer print

The contents of the AC are loaded into the line printer buffer. The
. AC is not cleared. Note that bit 10 of the IOT is ignored; 6662 is

1 - DLAG - Disk Load Address and go
~Allows the user to read or write on the RKBE. To use, load the AC
~with the address of a three word block, where:

" flord 1l Bit 0 = 0 for a read,
‘ 1 for a write .
Bits 3-8 contain the number of pages to
read/write, 1 to 40.
Bits 9-10 contain the drive number 0 to2.
, Bit 11 contains the high order sector address.
~Word 2: contains the core buffer address minus one,
Word 3: contains the low order sector address.

i

a return, the AC contains the number of blocks transferred. To determi
.t conditions, see 6772-RDS. The disk transfer is made in 400 {octal)
:ms. Each RKOS5 drive contains 14540 (octal) blocks. To specif the
+ial block number, the high order bit goes into word 1 of the paramete:
%, and the remaining 12 bits into word 3. 1If the transfer requests ar
number of pages on a write, the last page of the last block on the dis
{ contain zeros. Upon return, the AC contains (P+1)/2, where P is the
wor 0f pages successfully transferred.

.+ - DTXA - DECtape go
"L.oad the AC with the address of a 3-word block, where:

wiord 1 Contains the unit, direction, and function
Word 22 Contains the block number
Wword 3= Contains the core buffer address minus one.

l‘-

cf word 1 zhcull

S

I

(U}

3 0-2 of word 1 contain the unit number. BRi JE
2/ in reverse. 3its 6-8 of word 1 should be 2 to read, 4 to write.

1 return, none of the parameters are altered, and the AC is cleared. Ti
- should execute a 6772-DTRB instruction to find out whether the transi:
.successful.

c-17

Note that this allows the user to read or write a block in the
reverse direction. The user must be aware that if a block is
written in one direction and read back in the opposite direction,
the order and contents of the data words will be changed.

771 - DTSF - Skip on DECtape flag. The next instruction is always
skiprped.

~i
~J
tJ

- DTRB - Read DECtape Status B, or

~d
~1
9]

- RDS - Read Device Status

The information obtained pertains to the RKS8E, DECtape, or Card
Reader, depending on which was most recently used. The contents
of the device status register are: -

RX8E: RKBE Status Register
Bit 0O: Centrol done

1l: Heads in motion

3: Seek fail

4: File not ready

5: Busy error

6: Time out error

7: Write lock out error
8: CRC error

9: Data request late
10: Drive status error
11: cCylinder address error

DECtape: TCO08/TCOl Status register B
Bit 0: Error flag
1: Mark track error
2: End of tape
3: Select error
4: Parity error
5: Timing error
11: DECtape flag

he status register for DECtape may also include 48@¢ or 4@3l. These?®
oftware generated errors such as block number out of rang.

Cc-18

Card reader:

The device status register contains the addroas o 10

last word of data transferred to the user's buffer. In addition, !

device status
followed by S
progress, and

“73 - DTSF DTRB -

‘The status is

register may contain 7777. This indicates that CTRI.
was typed while a DECtape or RK@5 transfer was in
the transfer was not finished.

placed into the AC and the next instruction is skippe

c-19

APPENDIX D
DETAILS OF MONITOR'S DATA BASE

INPUT/OUTPUT DATA BASE

© o All I/0, except for the disk, is controlled from a single, fixed-
;gth table, DEVTBL. Actual data about the status of each device is
.d in a Device Data Block (DDB). DDBs are dynamically assigned

1cks of free core. The actual data to be transferred is contained in
jfers. In the case of terminal I/0, the high-speed reader and punch
.. the line printer, these buffers are dynamically assigned blocks of
;2 core. One or nmore (linked) blocks of free core make up a buffer.
yninals are considered to be two devices: a keyboard and a tele-
rater. Each as a DDb, and each has its own buffer. Some of the assign
:ices, which have higher data rates, do not use dynamic core buffers.
2 DECtape uses a fixed 201 word buffer, the disks and card reader

nsfer directly to and from the user's core area.

The tables, DDBs, and buffers are linked together by pointers.
WIBL is, in fact, a table of pointers. If a device is inactive (a
sminal not logged in or other devices not assigned) the corresponding
nle entry is zero. If the device is in use, the table entry is a
inter to its DDB. The DDB for each device also contains pointers,

2 £i1l1ll, and the enpty pointer. The fill pointer points to where the
:xt character to be put into the buffer should go; it points to the
12ad" of the buffer. The empty pointer points to the next character
sbe taken from the buffer. Each buffer block contains in its f:rzt

ﬁd a pointer to the next block. The last block in the buffer contains
111 count indica:ing to which position in that block the next <har-
+er should go. Figure D-1 shows the relationship of tables, DD,

1 buffers.

DEVTBL DEVICE DATA BLOCK CHAR BUFFER

FILL FONTER —et

EMPTY PCINTER

CHA® AUFFER
FILL COUNT
I —
FILL FOINTER

EMPTY POINTER |

DEVICE DATA BLOCK

CHAR RUFFER
i FILL CounT

=

e —o

08 -03¢¥

Figure D-1. ‘Relationship of DEVTBL, DDBs, and Buffers

DUYBL 1is set up with the terminal entries first, the entries for
the reader, punch, an unused entry, the line printer, the card reader
second, eight entries for DECtape, four entries for RKO5 third, and
finally a 7777 terminator. The number of entries for terminals, and
hence the size of the table, is dependent on the configuration ‘
parameters specifying the number of terminals. DEVBE marks the
beainning of the assignable device section of DEVBL, which always con-
t 15 17 entries even though all these devices may not be included in
the system. All slots in DEVTBL which correspond to non-existent
devices are filled with dummy pointers to prevent assignment. See
Figure D-2. '

Device Data Blocks are always 8-word blocks assigned from free
core. The DDBs for the assignable devices exist for as long as the>1}
device 1s assigned. For all DDBs, bits 7 through 11 of word zero con~ .
tain the unit number. Bits 7 through 11 of word 1 coatain the job-
number which owns the device. Word 3 contains the time at which the -
device becomes active. This 12-bit time is taken from bits 3 through
11 of CLK2, and bits 0 through 2 of CLKl. The use of the remainder of
the DDB depends on the particular device.

There are a number of status bits in word zero of the keyboard
DDB. The XON bit is set when a buffer is almost full and XOFF is sgﬁ
to the terminal. When the buffer is emptied, XON must be sent. 8I 1¥

iv

set to indicate that the terminal is in Monitor mode. DUP is set to -
cate that the terminal is in duplex mode. SICOM, when set, indicates
tha* zhe user has just finished typing a command to SI.

—a el -

Figure D-4.

Free core buffers are packed 10 charachters to a block.
1 throught 7 go in bits 4 through 11 of words 1 through 7.

8,9,
through 6.

]

e |

Figure

et et v e} 4 8 e

Q@ xXON 5D Tl TV

BREAIC MAIXK

e i - A R—— « £ - 4 et © —————

—— —

TIMIZ AT A351SNMENT

FiLl. BLDCK POINTER

CHARACTER COUNY .

EMPTY ALCCK COUNT

EMPTY BLOCK POINTER ’

D-3.

Keyboard Device Data Block

«

v‘,fJ@D{CmLL

3 TIME AT ASSIGNMENT
< FULL BLOCK POINTER
bl THEARACTER COUNT

& EMPTY BLOCK COUNT

fUMPTY BLOCK POINTER

and Line Printer.

POINTER YO WEXT BUFFER I
] OR FiL L, COUNT

°
1 CHAR 7
CHaR 8
2 CHAR 6
3 CHAR 3
CHAR 9 | —s
. CHAP 4
5 CHAR 3
CHAR1Q
6 CHAR 2
b CHAR |
on 0372

Figure D-5.

Character Buffer
D-4

Device Data Block-Teleprinter, Reader, Punch

Characters
Characters

and 10 are split and packed into the high-order bits of words 1,

Bits O through 3 of word 7 are unused. See Figure D-5.

—
i
\

IRANAN

—
v

3

T \(.
.

.
s &

g

o

L

e r———

C L\(;L-(‘(;L c,'&rC N\

JYLE .Gl

IMA3ZE M SL,

!

e 2 e v i e 3 e s BETIT 2R

N yTue YeY W

s

R bt

The DDBs for DECtape and RENG5 on ghoun in Pioures D-6 and D-7

-]

° 30 \ To

1
o 909 2 ' e
4

R] CURRENT =~ 7rx 4O

-] . ’ . - |

1] TIME AT AST NMENT i :
. THWE AT L SUNMENT i

-

41 TUNCT ON A CIRECTION

3 JSEQ P uMETERY WORD ¢

* 1 CESIRCC BLOCK NO

L JAER AYRAME T 0 WORD ¢

6| CORE BUFFER AOCRESS-1

6| USER PAaRAMETL -, wWO®D 3
7| SEARTH Timen T [i ?

iqure D-6. Device Data Block - Figure D-7. Device Data Block
DECtape RKO5

L —

, 2 USER PROGRAM STATUS

H

~ All job status information is based on a single, fixed-lenath

:;ple in Monitor core, JOBTBL. JOBTBL has a l-word entry for each
;ssible job. If the job does not exist, that is, no one is logged in
: that job, the corresponding entry in JOBTBL is zero. If that job

es exist, the entry contains a pointer to the first of three (linked)
1 Status Blocks. These contain complete information about the running
ate of that job. For each file open to that job, there are two
iditional blocks; one additiopal block contains information about the
.le, and the other additional block indicates where it is on the disk.
jile a file transfer is in progress, still another block exists which
mtains parameters for the transfers. Finally, when executing an IOT
ich requires a FIP call, a block may be set up tc pass the paramcters
;e Figure D-8.

- ———————————— T e+ e ——— e e . e e e —— —

Jo8) J08 J08 408 FILE PILE
a2 status | STATUS sTATUS CONTROL RETMIE VAL
8LOCK T BLOCK BLOCK 8LOCK INFOR
Joa 3 o ' 2 -~ B BLOCK
) | CFILE !
g ; H OO g
] ! \
107 ! RFLE/ !
% = L1 PARAME TER L welt
2080 neek PARAMTER
|LOCK
Jo® TeL
. - .
Figure D-8. Job Status Information

The three job status blocks exist for all jobs
saved state for the job, AC, PC, LK, and the EAE registers

contain the status of the job's I/0.

JOBSTS (STRQ

TR

DEVICE 3'.TuS

WAIT MA -

b N -9

[ﬁ[_‘r"(l R~ A'\CT‘;’»(5S

See Figure D-9.

—

R ———

(o e o bt -
- ' [
| Q. s e 4
71 JOBLNK I3 CT NGMBE R
. — S—
L] SWITCH REGILTER LR AN LN * CONTRCL _J
1t oec 20| F CONTRCL
12 LINK 21 s CONTROL
13 AC 20 e COUTROL
o
181 MO 23 | OW-QI0LS LY
13 $C.GT. MOOE J 24§ W -ORIER RUN 1

Figure D-9.

They contain th:

They als:

Job Status Blocks

STRO contains status bits which are not directly associated with

I/0.

STR1 contains bits which may be considered flags.

They are set

and cleared according to whether the associated device is ready or not

ready. The

"wait mask"”

masks STRI.

When a job is waiting for a

device, a single bit in the wait mask, corresponding to the device bit
its bit in STR1 is set.

in STR1,

is set.

When that device finishes,

STR1 and the wait mask are "ANDed" together,

zerao,

aad 1f the result is now

the scheduler knows that the job should be run.

When a job is

not waiting, bit 11 (the dummy wait bit) is set in both STR1l and the

wait mask, allowing the job to run.

KUK

ERROR ENABLE

COMPUTE BOUND

R PRIVILEGE

ACCT PRIVILEGE

NON-RESICENT 10T

COPY [OT RESULTS

EXECQUTE ONLY

ERROR NS INHIBIT

2]8lvle|~vjo|rjsjuini-le

}S‘!‘T{M EPROR COHY.

Figure D-10a

STRO

See Figure D-10.

i TidER

FLEW®
THE Y
FLE 2
CLES
KEYBOARD

LINE PRINTER

TELFFTNTER

READEP
PUNCH

ERROR

DUMIMY WIT

Figure D-10b

STR1

The DECtape, card reader, and RKBLE are exceptions. When a “ob is
saiting for one of these device, the wait mask 1s set to zero Bits
3-8 of wait 2 are set to the address of the DDB for the device, and
hits 9-11 are set to 1 or 2 for PDECtape, 3 for RKO5 or 4 for the card
reader.

If a user program IOT or an SI command requires FIP to be called,
-an IOT parameter block is set up to hold the IOT and its parameters
A pointer to this block goes into JOBLNK. If a FIP IOT is to be
gxecuted which requires no parameters, the IOT itself goes into JOBLNK,
‘and no IOT parameter block is set up.

"

Within Job Status Block 2 are four registers which correspond to
‘the four possible internal files. If a register is zero, no file is
iopen on that internzl file. When the file is opened, a file contrcl
‘plock is set up and a pointer to it is put in Job Status Block 2. At
ﬁhe same time, the first 8-word File Retrieval Information Block for
ithat block is fetched from the UFD and is set up in another block of
free core. Referred to as the file window, this retrieval block is
used to calculate addresses for file reads and writes. If part of the
file being accessed does not correspond to this window, FIP is called
to move the window to the appropriate area. Word 1 of the contro:l
block remembers which retrieval information block is in the retrioval

window.

When a user program executes an RFILE or WFILE, the transfer
.parameters'(word count and file address) are stored in the file crntrol
‘block. The file address is an address within the logical file. 7he
‘address of the transfer parameters in the user program is alsc sz o
~Then, using the file window, the logical file address is reduced tu a
}physical disk address. A pointer indicating where to go in the
.Monitor, when the transfer is complete, is also stored. Thils block is
‘also linked into the disk gueue (DSUTBL). See Figures D-11 and D-12.

I

CLKTBL is used to execute the STM instruction. It has a l-word
entry for each jocb. If that job is not waiting out an STM, 1its entry
-is zero. If it is waiting, the entry contains the number of secocnds
~left to wait (in 2's complement). When the counter goes to zero, the
‘timer flag for that job is set. See Figure D-13.

ADORESS OF FILE POINTER TO NEXT
% | winoow O | wincow IN UFD ° 803/4¢00
SEGHENT INDEX IN | .
) WINDOW 1 SEQ @ ! OI8K EXTENDED ADD o
2 | file statugp 2 | s€q e 2 ! ?Lﬁgﬂ
3| PFESERY | 3| seee 3 | -worp COUNT
FILE EXTENDED .
4 ADDRESS 4 s¢Q ¢ . 4 CORE. ADDRE3S
5 | FILE ADDRESS s | sece h 8 | DISK ACDRESS
6 | -WORD COUNT ¢ | seee ¢ | LENEL2 on aco.
; | ADDRESS OF USER ALCAES3 OF FILE
7 | panamETERS 7| e T LcontRoL
08-0877 08-087Y
Figure D-1lla. Figure D-11b. Figure D-12.
File Control File Window, or Read/Write
Block File Retrieval Pile Paramster
Information Block bBlock
SECONDS S]o]: B CONSOLT % v0B 1) __
SECONDS CONSOLE # 408 2
e R i
- m
JOD n cmax&awau’
CLXTBL S TYYYBL

Figure D-13. CLKIBL and TTYTBL

The TTYTBL table has a l-word entry for each possible system job.
FEach entry contains the number of the terminal associated with that
jok. See figure D-13. ' |

D.5 MONITOR SCHEDULING DATA BASE

DEVTEL, JOBTBL, and related status blocks maintain some EduSysteml‘:iﬁ
status information relating to individual jobs. The monitor also main<
tains some of its own tables. These are used primarily to schedule.

CORTBL contains the status of the user fields. It is a 7-word .
table in monitor core, each word corresponding to a core field. Within
each entry, bits 7 through 11 contain the job number of that field. If.
the field is empty, a zero is stored there. If the job that occupies .
1 ficld is not completely there, bit 0 is set to indicate a swap is in
oroaress. A job is considered to be in a field from the time it is
scheculed to be swapped in until the time it is completely swapped Qutﬂ

Bit. I is set if the job in that core field cannot be swapp

Bit 2 is cet if the job

swapped out until it has

the sense that they run
is running, the calling
set to remember that it
in field 2. CORTBL has
whether it is available

in that field has not been run. It can
been run. FIP and SI are called phant
in place of a user job. Therefore, whe
job number is stored in CORTEL. Bit 3
1s actually a phantom. Phantoms can rt
an entry for every core field but fielc
or not. At startup time, the Menitor':

and nonexistent fields have their lock bits set to prevent use.

Figure D--14.

CORTBL

FIELD

FIELD 2

FIELD 3

FIELD 4

FIELD 8

FIELD &

SR SRS Sy T S o TR

FIELD 7

WAP

[
KOTRUN
Fir
st
NOHOLD
Jo3

® 3

04-0879

Figure D-14. CORTBL

PRGTBL maintains information on what program each user 1is
It has a 3-word entry for each possible job. When a user type:
or RUN command, the filename (one to six characters packed in
format) is stored in PRGTBL. This information is uscd solely !

EduSystem 50 SYSSTAT.

DSUTBL is the disk request gueue. It contains a <4-word e:
sach core field in the system. A 7777 word terminates DSUTBL.
each 4-word entry there is a register for each of the four pos:
files open to the user currently in that core field. If the e
zero, there is no file transfer pending for the internal file

iser in that core field.

If the entrv is nonzero, it 1s a poil

1 parameter block (the RFILE/WFILE parameter blceeck) which dosc
-he transfer to take place. A pointer, DSKPTR, cycles thrcugh
0 do transfers. See Figure D-15.

oSuUTBL+7 DECTAFE ENTRY FOR FIELD 1

FILEO

e - - - ~
FILE §

e e e = o ENTRIES FOR FIELD 2
FILE2

T FILE 3

]
FILE @

e @t e < - - -
FILE ¢

b e e e = = ENTRIES FOR FIELD N
FILE 2

————————— -
FILE 3
7 END OF LIST

Figure D-15. DSUTI

DISK FILE DATA BASE

FFor each EduSystem 50 account number ther is a separate disk
2 library that contains named files. The User File Directory,
zh o>ntains the filename (and some associated information) and
2 1ocation information for each file, controls this library.
name is in an 8-word name block; the retrieval information is
Jne or more 8-word file retrieval information blocks. The UFD
21f is stored in disk segments, up to a maximum of seven.

The first 8-word block of the UFD is a dummy block. It con-
1s all zeros except for a pointer to the next block.

The MFD is identical in form to a UFD. The only difference
in the contents of the name block. Where the UFD has six file-~
> characters packed into three words, the MFD has the account
>er in the first word, then two words of password. Altogether,
se three words are the name of the associated UFD. See Figure

-~
oo

3\ r '—
10 DUMMY BLOCK iC
. y \ !
(| Accovnt mier
FILE NAME . »
Paes. crd
Pir to rent nems block Ptr 15 re e} s
- NAME BLOCK r o nrxdpeme btk
EXLJ Protachen Quota In, Luota Cul
Fils Siz28 CPU tima used
Dute of Crocticn Devics time use?
Pir. to Rtatrieva! Block J L Ptr. to retrisval plzow
Ptr. 10 next Felrisve: Biock) (0
1
Sagmant FILE RETRIEVAL | P
- ' y ceg
Sagment INFORMATION BLOCK Segment .
. .
.]\ :
Av 'iu -~ ~.
V) 2V e
12 Bit Grace Wor. 17 Ace
UFD b
K . ; T CR-TA8T
Figure D-16. Ffile Directories T

D.5 FILE PHMNTOM DATA PMASE

The primary data hase of the File Phantom is the direoctor:.c
MFD and UFDs. Althouah thev may be accessed as files by o uner 1ou
in with the system pascword, these directorics are normally u.nad orn
by FIP. 1In addition, to keep track of disk usage, FIP ma:ntains a
Storage Allocation Table (SAT). The SAT is a bit map ¢ *un disk
space. The 12 bits in each SAT word correspond to 12 disr soecronats
1 1f the segment is used, 0 1if it is available. At ref
sets all bits which correspond to nonexistent disk to 1s The SAT
located at the top of FIP's 4K. It is therefcre swappcd into coowe
FIPr. If the SAT is updated, it is written back to the disy.
SAT i1s a register, SATCHNT, which records the number of freo disn wo

ments. See l'igure D-17.

p-11

7250 QPO
4

SAT

7
08-0565

Figure D-17. SAT

FIP also maintains some convenient tables within its own 4K arca.
These tables allow FIP to get at frequently used information quickly.
For example, when a user logs in, thoe retrieval block, which indicates

where his UTD is located, 1s fetched from the MFD and stored in a table.

¥IP need not then scan the MFD for this user every time he opens a file.

JORTAN contains a l-word entry for each possible system job. 1If
no one is logygad in for that job, the entry is zero. 1f there is a
user logeged in, the account number is stored. (Do not confuse £iP's
JOBTAB with the Monitor's JOBTBL.) See Figure D-18.,

RELATIVE POINTER
o INTO RCTTEIL
—————————— - FILE O
JoB1 | Account nUMBER ADDRESS IN UFD
JOB 2 | ACCOUNT KUMUER POINTER
- - - - - — - -4 5 FILE
ADDRESS
POINTER
RN FILE €
ADDRESS
~ ~N
g g POINTER
I N - FILEZ
JUB n | ACCOUST KUMBER ADDRESS
JOBTAB ENTTuL ENTRY
08-0%581

Figure D-18. FIP Talles

ENTTBL contains an 8~word block for ecach possible system job.
wzthin these eight words are four 2-word entries, one for each possible

open file for that job. If the entry is zero, the file is not open.

If the file is open, the first word points to the entry in
RETTBL for this file. The second word points to the location

within the user's UFD where the File Retrieval Information Blocks
for this file begin. See Figure D-18.

’ UFDTBL and RETTBL work together to maintain retrieval inform-
ation for all UFDs in use within the system. A UFD is in use if
‘one or more users are logged in with that account or if the user
has opened a file from the library of another user. There is only

one entry in UFDTBL and RETTBL for each UFD, even if more than one
user is using it.

UFDTBL is a table of 4-word entries. The first is the account
number of the UFD which is open, the second is the number of users who
have access to it. (this number is decremented cach time a user stops
1sing that UFD. If the count goes to zero, the entry i removed Irom
FDTBL and RETTBL.) The access count is in 2's complement form.

t RETTBL contains the File Retrieval Information Block for the UFD
jnich corresponds to the account number in UFDTBL. There are no
jointers between the two tables. Entries correspond positienally.

‘he number of entries in these tables is at least the number of on-line
isers. The number of additional entries depends on the amount of file
tharing. For instance, the library UFD is invariably open to several
sers. See Figure D-19.

e o e e e s

.
L i

UFEN RETRITTTT
BLOCK wolM T

TLCEG. COUNT
U —

UFDTBL RETTRL

Figure D-19. UFD Retrieval Data

UFDTBL and RETTBL are initialized to have the system account
(#1) open as the first entry with an access count of 1 (actually -1).
This allows FIP to get at the MFD while processing a LOGIN request.

All FIP tables except the SAT are cleared at system startup time.
SAT 1s cleared at initialize time.

NAME

CORTBL
L2OTB

SKPTBL
LuoDTB
TUOTBL
LRWTBL
DEVTBL
JOBTBL
CLKTBL
TTYTBL
PRCTBL
QSUTBL
JTABLE
ENTABL
UTABLE
RTABLE
SATTBL

T=NULINE+1

MONITOR TABLES

WHERE
TS8
TS8
TS8II
TS8
TS8
TS8
TS8II
TS81IX
TS8IX
TS8IX
TS8LL
TS8IX
FIP
FIP
FIP
FIP
FIP

J=JOBMAX -

TABLE SIZE

6

16

2XT+4

56

56

33

2XT+18

J+1

J+1
Jfl
3xJ
4xUF+1
J+1
8xJ
8xJ
léexd

344

\ix»:)

UF=# U

ro

—~

SER FIELDS

ENTRY SIZE

1/12

APPENDIX E

ASSEMBLING AND LOADING EDUSYSTEM 50 FROM SCURCES

E.1 ASSEMBLING EDUSYSTEM 50 MONITCR

: Use the following command lines under 0S/8 version 3 to assemble
Monitor, where CONFIG.PA has been modified to reflect the desired
configurations:

: «PAL $1<CONFIG,PARAsSI/K
' «PAL FIP<CONFI1G>PARA»FIP

+PAL INIT<CONFIGs»PARA,[NIT

«PAL 7TSB<CONFIGsFARA»T38,TSB8II1/K

' When using CREF, the M option will be necessary. The binaries
may be punched on paper tape, or on 20K or larger systems, a shortcut
may be taken. Type, under 0S/8,

«LOAD INIT»SI>FIP»TS58/3=24200
Use the C option in INIT to write fields @ through 4 to tracks
4 through 4 on the disk, initialize the system, load PUTR using the
0 option, start the system, log in under account 2, type "START 4",

and the system is up.

'E.2 ASSEMBLING AND LOADING BASIC

To assemble BASIC under 0S/8 version 3. type:

.PAL BASED

.PAL BASCOM
.PAL BASLDR
.PAL BASEXC
.PAL BASICN

tISystem 50 library.

» create a SAVE format file, the binaries must be transferred to
Then, perform the following under EduSystem 50:

«CRE BASIC;O0PE 3 BASIC;EXT 3 37
«R LOADER

INPUJT-BASED

OPTION-

tBS

«SAVE BASIC3R LOADER
INPUT-BASCOM

OPTION-

tBS

«SAVE BASIC 6144 4305;R LOADER
INPUT -BASLDR

OPTION=-

tBS

«SAVE BASIC 13150 40@;R LOCADER
INPUT -BASEXC

OPTION-~-

tBS

«SAVE BASIC 13714 4005;R LOADER
INPUT-BASICN

OPTION-

1BS

«SAVE BASIC 14157 400

SSEMBLING AND LOADING THE FORTRAN SYSTEM

o assemble the FORTRAN system under 0S/B version 3, type:

«PAL FORT,DECODE
«PAL FOSL,DECODE
« PAL FDCOMP
+PAL FOSSIL

o create the new SAVE files under EduSystem 50, first type:

«CRE FORT;OPE 3 FORTS;EXT 3 S
«CRE FOSL;OPE 3 FOSLSEXT 3 5
«CRE FDCOMP;CFPE 3 FDCOMP3SEXT 3 14
+CRE FOSSIL;O0PE 3 FOSSILEXT 3 9

	000
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-04
	2-05
	2-05a
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	3-04
	4-01
	4-03
	4-04
	4-05
	5-01
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	D-01
	D-02
	D-04
	D-04a
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02

